Tidymodels:在 R 中进行 10 倍交叉验证后,从 TIbble 中取消最佳拟合模型的 RMSE 和 RSQ 值
Posted
技术标签:
【中文标题】Tidymodels:在 R 中进行 10 倍交叉验证后,从 TIbble 中取消最佳拟合模型的 RMSE 和 RSQ 值【英文标题】:Tidymodels: Unnest the RMSE and RSQ Values for the Best Fitted Model from a TIbble after conducting a 10-fold cross validation in R 【发布时间】:2021-03-09 22:58:54 【问题描述】:概述
我已经使用 tidymodels 包和数据框 FID(参见下面的 R 代码)制作了四个模型:
-
一般线性模型 (glm)
袋装树
随机森林
增强树
数据框包含三个预测变量:
-
年份(数字)
月(因子)
天数(数字)
因变量是频率(数字)
瞄准
我的目标是在对使用函数fit_samples().
小标题示例
# Resampling results
# 10-fold cross-validation
# A tibble: 10 x 5
splits id .metrics .notes .predictions
<list> <chr> <list> <list> <list>
1 <split [24/3]> Fold01 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [3 × 3]>
2 <split [24/3]> Fold02 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [3 × 3]>
3 <split [24/3]> Fold03 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [3 × 3]>
4 <split [24/3]> Fold04 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [3 × 3]>
5 <split [24/3]> Fold05 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [3 × 3]>
6 <split [24/3]> Fold06 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [3 × 3]>
7 <split [24/3]> Fold07 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [3 × 3]>
8 <split [25/2]> Fold08 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [2 × 3]>
9 <split [25/2]> Fold09 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [2 × 3]>
10 <split [25/2]> Fold10 <tibble [2 × 3]> <tibble [0 × 1]> <tibble [2 × 3]>
我想通过绘制真实值在 x 轴上且预测值在y 轴,如下图教程和绘图所示。
教程
https://www.tmwr.org/performance.html
当我尝试使用函数 predict() 在测试数据上预测拟合模型时,我在 attempt 1 和 attempt 2 中不断遇到以下错误消息: -
错误消息 - 尝试 1
Error in UseMethod("predict") :
no applicable method for 'predict' applied to an object of class "c('resample_results', 'tune_results', 'tbl_df', 'tbl', 'data.frame')"
错误消息 - 尝试 2
Error: `...` is not empty.
We detected these problematic arguments:
* `..1`
These dots only exist to allow future extensions and should be empty.
Did you misspecify an argument?
问题
我的印象是我必须取消嵌套 RMSE 和 RSQ 所有拟合模型(即 glm、袋装树、随机森林、提升树)的指标,然后我才能使用拟合模型对测试数据进行模型预测,以便评估模型有效性或从为拟合模型而创建的函数的 10 倍交叉验证期间检查的模型范围中去除最佳模型。
如果有人能够帮助我解决使用函数 predict() 预测 拟合模型上的测试数据 的问题,我将不胜感激。如果不将真实值和观察值绑定到一个数据框中以使用 ggplot() 进行绘图,我无法在单个图中可视化 RMSE 和 RSQ 指标。
非常感谢。
绘图
R 代码
尝试 1
##################################################
##Model Prediction
###################################################
##Open the tidymodels package
library(tidymodels)
library(tidyverse)
library(glmnet)
library(parsnip)
library(rpart)
library(tidyverse) # manipulating data
library(skimr) # data visualization
library(baguette) # bagged trees
library(future) # parallel processing & decrease computation time
library(xgboost) # boosted trees
library(ranger)
library(yardstick)
library(purrr)
library(forcats)
###########################################################
#split this single dataset into two: a training set and a testing set
data_split <- initial_split(FID)
# Create data frames for the two sets:
train_data <- training(data_split)
test_data <- testing(data_split)
# resample the data with 10-fold cross-validation (10-fold by default)
cv <- vfold_cv(train_data, v=10)
###########################################################
##Produce the recipe
rec <- recipe(Frequency ~ ., data = FID) %>%
step_nzv(all_predictors(), freq_cut = 0, unique_cut = 0) %>% # remove variables with zero variances
step_novel(all_nominal()) %>% # prepares test data to handle previously unseen factor levels
step_medianimpute(all_numeric(), -all_outcomes(), -has_role("id vars")) %>% # replaces missing numeric observations with the median
step_dummy(all_nominal(), -has_role("id vars")) # dummy codes categorical variables
###########################################################
##Create Models
###########################################################
##########################################################
##General Linear Models
#########################################################
##glm
mod_glm<-linear_reg(mode="regression",
penalty = 0.1,
mixture = 1) %>%
set_engine("glmnet")
##Create workflow
wflow_glm <- workflow() %>%
add_recipe(rec) %>%
add_model(mod_glm)
##Fit the model
plan(multisession)
fit_glm <- fit_resamples(
wflow_glm,
cv,
metrics = metric_set(rmse, rsq),
control = control_resamples(save_pred = TRUE,
extract = function(x) extract_model(x)))
##########################################################
##Bagged Trees
##########################################################
#####Bagged Trees
mod_bag <- bag_tree() %>%
set_mode("regression") %>%
set_engine("rpart", times = 10) #10 bootstrap resamples
##Create workflow
wflow_bag <- workflow() %>%
add_recipe(rec) %>%
add_model(mod_bag)
##Fit the model
plan(multisession)
fit_bag <- fit_resamples(
wflow_bag,
cv,
metrics = metric_set(rmse, rsq),
control = control_resamples(save_pred = TRUE,
extract = function(x) extract_model(x)))
###################################################
##Random forests
###################################################
mod_rf <-rand_forest(trees = 1e3) %>%
set_engine("ranger",
num.threads = parallel::detectCores(),
importance = "permutation",
verbose = TRUE) %>%
set_mode("regression")
##Create Workflow
wflow_rf <- workflow() %>%
add_model(mod_rf) %>%
add_recipe(rec)
##Fit the model
plan(multisession)
fit_rf<-fit_resamples(
wflow_rf,
cv,
metrics = metric_set(rmse, rsq),
control = control_resamples(save_pred = TRUE,
extract = function(x) extract_model(x)))
############################################################
##Boosted Trees
############################################################
mod_boost <- boost_tree() %>%
set_engine("xgboost", nthreads = parallel::detectCores()) %>%
set_mode("regression")
##Create Workflow
wflow_boost <- workflow() %>%
add_recipe(rec) %>%
add_model(mod_boost)
##Fit model
plan(multisession)
fit_boost <-fit_resamples(
wflow_boost,
cv,
metrics = metric_set(rmse, rsq),
control = control_resamples(save_pred = TRUE,
extract = function(x) extract_model(x)))
模型预测
###################################
##Model Prediction
####################################
##glm model
test_res <- predict(fit_glm, new_data = test_data %>% select(-Frequency))
##Error Message
Error in UseMethod("predict") :
no applicable method for 'predict' applied to an object of class "c('resample_results', 'tune_results', 'tbl_df', 'tbl', 'data.frame')"
##Predicted numeric outcome from the regression model is named .pred. Let’s match
#the predicted values with their corresponding observed outcome values:
bind_test_res <- bind_cols(test_res, test_data %>% select(Frequency))
#Note that both the predicted and observed outcomes are in log10 units.
#It is best practice to analyze the predictions on the transformed scale
#(if one were used) even if the predictions are reported using the original units.
使用 ggplot() 绘制数据:
ggplot(bind_test_res, aes(x = Frequency, y = .pred)) +
# Create a diagonal line:
geom_abline(lty = 2) +
geom_point(alpha = 0.5) +
labs(y = "Predicted Frequency (log10)", x = "Frequency (log10)") +
# Scale and size the x- and y-axis uniformly:
coord_obs_pred()
尝试 2
##split this single dataset into two: a training set and a testing set
data_split <- initial_split(FID)
# Create data frames for the two sets:
train_data <- training(data_split)
test_data <- testing(data_split)
##Produce the recipe
rec <- recipe(Frequency ~ ., data = FID) %>%
step_nzv(all_predictors(), freq_cut = 0, unique_cut = 0) %>% # remove variables with zero variances
step_novel(all_nominal()) %>% # prepares test data to handle previously unseen factor levels
step_medianimpute(all_numeric(), -all_outcomes(), -has_role("id vars")) %>% # replaces missing numeric observations with the median
step_dummy(all_nominal(), -has_role("id vars")) # dummy codes categorical variables
# resample the data with 10-fold cross-validation (10-fold by default)
cv <- vfold_cv(train_data, v=10)
Run our models
# Extract our prepped training data
# and "bake" our testing data
prep<-prep(rec)
training_baked<-juice(prep)
testing_baked <- prep %>% bake(test_data)
##glm model
glm_model<-linear_reg(mode="regression",
penalty = 0.1,
mixture = 1) %>%
set_engine("glmnet")
##Create workflow
wflow_glm <- workflow() %>%
add_recipe(prep) %>%
add_model(glm_model)
##fit the model
fit_glm<- wflow_glm %>% fit(Frequency~Year+Month+Days, data=FID)
##Error Message
Error: `...` is not empty.
We detected these problematic arguments:
* `..1`
These dots only exist to allow future extensions and should be empty.
Did you misspecify an argument?
数据框 - FID
structure(list(Year = c(2015, 2015, 2015, 2015, 2015, 2015, 2015,
2015, 2015, 2015, 2015, 2015, 2016, 2016, 2016, 2016, 2016, 2016,
2016, 2016, 2016, 2016, 2016, 2016, 2017, 2017, 2017, 2017, 2017,
2017, 2017, 2017, 2017, 2017, 2017, 2017), Month = structure(c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L,
5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L), .Label = c("January", "February", "March",
"April", "May", "June", "July", "August", "September", "October",
"November", "December"), class = "factor"), Frequency = c(36,
28, 39, 46, 5, 0, 0, 22, 10, 15, 8, 33, 33, 29, 31, 23, 8, 9,
7, 40, 41, 41, 30, 30, 44, 37, 41, 42, 20, 0, 7, 27, 35, 27,
43, 38), Days = c(31, 28, 31, 30, 6, 0, 0, 29, 15,
29, 29, 31, 31, 29, 30, 30, 7, 0, 7, 30, 30, 31, 30, 27, 31,
28, 30, 30, 21, 0, 7, 26, 29, 27, 29, 29)), row.names = c(NA,
-36L), class = "data.frame")
【问题讨论】:
看起来您正在拟合一个名为fit_glm
的变量,然后尝试在 glm_fit
上进行预测。还是我看错了?
我正在尝试根据教程中的代码预测测试数据上的拟合模型
明白了;但是(我可能是错的),看起来你正在做 test_res <- predict(glm_fit, new_data = test_data %>% select(-Frequency))
而你应该做 test_res <- predict(fit_glm, new_data = test_data %>% select(-Frequency))
(根据你训练的内容 - 请注意第一个参数的差异)
当我写这个问题时,这是一个副本和过去的错误。感谢您让我注意到这个错误。当我更正错误时,我收到一条新的错误消息,我不明白。你能开导我吗?
可以肯定的是,我对 tidymodels 还不够熟悉,但我认为这是因为您适合 fit_resamples
,而不仅仅是 fit
。在这里看看 Julia 的回答:community.rstudio.com/t/…(我还没有看过你正在学习的教程)
【参考方案1】:
这个答案的灵感来自 Max Khun
#split this single dataset into two: a training set and a testing set
data_split <- initial_split(FID)
# Create data frames for the two sets:
train_data <- training(data_split)
test_data <- testing(data_split)
# resample the data with 10-fold cross-validation (10-fold by default)
cv <- vfold_cv(train_data, v=10)
###########################################################
##Produce the recipe
rec <- recipe(Frequency ~ ., data = FID) %>%
step_nzv(all_predictors(), freq_cut = 0, unique_cut = 0) %>% # remove variables with zero variances
step_novel(all_nominal()) %>% # prepares test data to handle previously unseen factor levels
step_medianimpute(all_numeric(), -all_outcomes(), -has_role("id vars")) %>% # replaces missing numeric observations with the median
step_dummy(all_nominal(), -has_role("id vars")) # dummy codes categorical variables
##########################################################
##Produce Models
##########################################################
##General Linear Models
##########################################################
##Produce the glm model
mod_glm<-linear_reg(mode="regression",
penalty = 0.1,
mixture = 1) %>%
set_engine("glmnet")
##Create workflow
wflow_glm <- workflow() %>%
add_recipe(rec) %>%
add_model(mod_glm)
#######################################################################
##MODEL EVALUATION
#######################################################################
##Estimate how well that model performs, let’s fit many times,
##once to each of these resampled folds, and then evaluate on the heldout
##part of each resampled fold.
##########################################################################
plan(multisession)
fit_glm <- fit_resamples(
wflow_glm,
cv,
metrics = metric_set(rmse, rsq),
control = control_resamples(save_pred = TRUE)
)
##Collect model predictions for each fold for the predictor frequency
Predictions<-fit_glm %>%
collect_predictions()
##Produce a data frame of the Predictions model
Prediction<-as.data.frame(Predictions)
##Open a new plotting window
dev.new()
##Visualise the data by plotting the predicted vs true values
ggplot(Prediction, aes(x = Frequency, y = .pred)) +
# Create a diagonal line:
geom_abline(lty = 2) +
geom_point(alpha = 0.5) +
labs(y = "Predicted Frequency (log10)", x = "Frequency (log10)") +
# Scale and size the x- and y-axis uniformly:
coord_obs_pred()
情节
【讨论】:
以上是关于Tidymodels:在 R 中进行 10 倍交叉验证后,从 TIbble 中取消最佳拟合模型的 RMSE 和 RSQ 值的主要内容,如果未能解决你的问题,请参考以下文章
如何在 Scikit-Learn 中绘制超过 10 倍交叉验证的 PR 曲线