如何将 KerasClassifier、Hyperopt 和 Sklearn 交叉验证放在一起
Posted
技术标签:
【中文标题】如何将 KerasClassifier、Hyperopt 和 Sklearn 交叉验证放在一起【英文标题】:How to put KerasClassifier, Hyperopt and Sklearn cross-validation together 【发布时间】:2019-11-10 22:01:40 【问题描述】:我正在使用 sklearn 在 Keras 模型上执行超参数调整优化 (hyperopt) 任务。我正在尝试使用 Sklearn 交叉验证来优化 KerasClassifiers,一些代码如下:
def create_model():
model = Sequential()
model.add(
Dense(output_dim=params['units1'],
input_dim=features_.shape[1],
kernel_initializer="glorot_uniform"))
model.add(Activation(params['activation']))
model.add(Dropout(params['dropout1']))
model.add(BatchNormalization())
...
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
return model
现在我要做的是使用以下方式将 Hyperopt 参数传递给 KerasClassifier
def objective(params, n_folds=N_FOLDS):
"""Objective function for Hyperparameter Optimization"""
# Keep track of evals
global ITERATION
ITERATION += 1
clf = KerasClassifier(build_fn=create_model,**params)
start = timer()
# Perform n_folds cross validation
cv_results = cross_val_score(clf,
features_,
labels,
cv=5
).mean()
run_time = timer() - start
# Loss must be minimized
loss = -cv_results
# Dictionary with information for evaluation
return
'loss': loss,
'params': params,
'iteration': ITERATION,
'train_time': run_time,
'status': STATUS_OK
我将搜索空间定义为:
space = 'units1': hp.choice('units1', [64, 128, 256, 512]),
'units2': hp.choice('units2', [64, 128, 256, 512]),
'dropout1': hp.choice('dropout1', [0.25, 0.5, 0.75]),
'dropout2': hp.choice('dropout2', [0.25, 0.5, 0.75]),
'batch_size': hp.choice('batch_size', [10, 20, 40, 60, 80, 100]),
'nb_epochs': hp.choice('nb_epochs', [10, 50, 100]),
'optimizer': opt_search_space,
'activation': 'relu'
运行优化
best = fmin(fn = objective, space = space, algo = tpe.suggest,
max_evals = MAX_EVALS, trials = bayes_trials, rstate = np.random.RandomState(50))
但它没有给出这个错误:
ValueError:激活不是合法参数
正确的做法是什么?
【问题讨论】:
【参考方案1】:将超参数作为create_model
函数的输入参数。然后你可以喂params
dict。还要在搜索空间中将键 nb_epochs
更改为 epochs
。阅读有关其他有效参数 here 的更多信息。
试试下面的简化示例。
import numpy as np
import pandas as pd
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from tensorflow.keras import Sequential
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.layers import Dense, Dropout
import time
def timer():
now = time.localtime(time.time())
return now[5]
X, y = make_classification(n_samples=1000, n_classes=2,
n_informative=4, weights=[0.7, 0.3],
random_state=0)
定义keras
模型:
def create_model(units1, activation, dropout):
model = Sequential()
model.add(Dense(units1,
input_dim=X.shape[1],
kernel_initializer="glorot_uniform",
activation=activation))
model.add(Dropout(dropout))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
return model
def objective(params, n_folds=2):
"""Objective function for Hyperparameter Optimization"""
# Keep track of evals
global ITERATION
ITERATION += 1
clf = KerasClassifier(build_fn=create_model,**params)
start = timer()
# Perform n_folds cross validation
cv_results = cross_val_score(clf, X, y,
cv=5,
).mean()
run_time = timer() - start
# Loss must be minimized
loss = -cv_results
# Dictionary with information for evaluation
return
'loss': loss,
'params': params,
'iteration': ITERATION,
'train_time': run_time,
'status': STATUS_OK
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK
space = 'units1': hp.choice('units1', [12, 64]),
'dropout': hp.choice('dropout1', [0.25, 0.5]),
'batch_size': hp.choice('batch_size', [10, 20]),
'epochs': hp.choice('nb_epochs', [2, 3]),
'activation': 'relu'
global ITERATION
ITERATION = 0
bayes_trials = Trials()
best = fmin(fn = objective, space = space, algo = tpe.suggest,
max_evals = 5, trials = bayes_trials, rstate = np.random.RandomState(50))
【讨论】:
感谢您的回答,请在下面查看我的其他问题 很高兴它有帮助!当你有一个新问题时,请提出一个新问题。不要发布问题作为答案。 我问我的新问题 (***.com/questions/56855499/…),请看一下,谢谢。以上是关于如何将 KerasClassifier、Hyperopt 和 Sklearn 交叉验证放在一起的主要内容,如果未能解决你的问题,请参考以下文章
将 input_dim 传递给 KerasClassifier(sklearn 包装器/接口)
尽管一切正常,但 KerasClassifier 无法拟合模型