使用一个热编码器时出现gridsearchCV错误
Posted
技术标签:
【中文标题】使用一个热编码器时出现gridsearchCV错误【英文标题】:gridsearchCV error while using one hot encoder 【发布时间】:2020-02-02 16:48:58 【问题描述】:我在使用带有一种热编码的 gridsearch cv 时遇到此错误: “分类指标无法处理多标签指标和多类目标的混合”
我的 y_train 形状是:(64345, 37),我的 X_train 形状是:(64345, 14)。
我无法弄清楚我哪里出错了。任何指导/帮助将不胜感激。
它可以为我的模型正确执行,而无需使用带有固定参数的 gridsearchCV。 如果不使用一种热编码,我会得到索引超出范围的错误。 该帖子的链接在这里:I was training an Ann machine learning model using GridSearchCV and got stuck with an IndexError in gridSearchCV
这是我拆分数据集的方法:
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
onehotencoder = OneHotEncoder(categorical_features = [0])
df = onehotencoder.fit_transform(df).toarray()
df=df[:,1:]
target=df[:,0:37]
dataset=df[:,37:51]
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(dataset,target,random_state=1)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train= sc.fit_transform(X_train)
X_test=pd.DataFrame(X_test)
这里是 gridseachcv 代码:
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
def build_classifier(optimizer, nb_layers,unit):
classifier = Sequential()
classifier.add(Dense(units = unit, kernel_initializer = 'uniform', activation = 'relu', input_dim = 14))
i = 1
while i <= nb_layers:
classifier.add(Dense(activation="relu", units=unit, kernel_initializer="uniform"))
i += 1
classifier.add(Dense(units = 37, kernel_initializer = 'uniform', activation = 'softmax'))
classifier.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics = ['accuracy'])
return classifier
classifier = KerasClassifier(build_fn = build_classifier)
parameters = 'batch_size': [10,25,32,64,128,256],
'epochs': [50,100, 200,500,1000,1500,2000],
'optimizer': ['adam'],
'nb_layers': [2,3,4,5,6],
'unit':[28,40,48,57]
grid_search = GridSearchCV(estimator = classifier,
param_grid = parameters,
scoring = 'accuracy',
cv=10,n_jobs=-1)
grid_search = grid_search.fit(X_train, y_train)
best_parameters = grid_search.best_params_
best_accuracy = grid_search.best_score_
我应该得到最好的结果参数,但我得到了错误- ValueError:分类指标无法处理多标签指标和多类目标的混合
【问题讨论】:
【参考方案1】:错误信息很清楚。
在这里,您有y_train:(64345, 37)
,这意味着每个样本都是多标签的。每个样本有 37 个标签。
sklearn的分类指标无法处理多标签的目标变量。
在申请GridSearch()
之前,您应该寻找获得y_train:(64345, 1)
的方法
对于可以处理红色多标签问题的模型:
https://scikit-learn.org/stable/modules/multiclass.html
Support multilabel:
sklearn.tree.DecisionTreeClassifier
sklearn.tree.ExtraTreeClassifier
sklearn.ensemble.ExtraTreesClassifier
sklearn.neighbors.KNeighborsClassifier
sklearn.neural_network.MLPClassifier
sklearn.neighbors.RadiusNeighborsClassifier
sklearn.ensemble.RandomForestClassifier
sklearn.linear_model.RidgeClassifierCV
【讨论】:
我尝试搜索,但直到没有,我无法解决此问题,如果您有任何文档或任何帮助材料,那将是很大的帮助。感谢您的帮助... 查看我的更新答案并考虑接受我的答案 我已将我的 y_train 转换为 (64345,) 但我收到另一个错误请看这个:***.com/questions/58131814/…以上是关于使用一个热编码器时出现gridsearchCV错误的主要内容,如果未能解决你的问题,请参考以下文章
将 gridsearchCV 与 Keras RNN-LSTM 一起使用时出现尺寸错误
将 sklearn 的 BaggingClassifier 与 GridSearchCV 一起使用时出现 ZeroDivisionError
将 Sklearn Pipiline 分支到 GridSearchCV 时出现问题