Python中的逐步回归

Posted

技术标签:

【中文标题】Python中的逐步回归【英文标题】:Stepwise Regression in Python 【发布时间】:2013-03-04 05:23:25 【问题描述】:

如何在python中进行逐步回归? SCIPY 中有用于 OLS 的方法,但我无法逐步进行。在这方面的任何帮助将是一个很大的帮助。谢谢。

编辑:我正在尝试建立一个线性回归模型。我有 5 个自变量并使用前向逐步回归,我的目标是选择变量,使我的模型具有最低的 p 值。以下链接解释了目标:

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CEAQFjAD&url=http%3A%2F%2Fbusiness.fullerton.edu%2Fisds%2Fjlawrence%2FStat-On-Line%2FExcel%2520Notes%2FExcel%2520Notes%2520-%2520STEPWISE%2520REGRESSION.doc&ei=YjKsUZzXHoPwrQfGs4GQCg&usg=AFQjCNGDaQ7qRhyBaQCmLeO4OD2RVkUhzw&bvm=bv.47244034,d.bmk

再次感谢。

【问题讨论】:

scikits.learn 有 LARS/套索,如果有任何用处:scikit-learn.org/dev/modules/linear_model.html#lars-lasso 您能否详细说明您希望使用什么样的标准来选择预测变量?如果您想要一个示例,您可以发布或链接到一些示例数据吗? 不建议将模型基于 p 值。它们更像是一种健全性检查,其他标准(例如 AIC 或 BIC)更合适。 链接好像坏了:We're sorry, the page you've requested could not be located. You can return to the Mihaylo Home Page or report an error to the Webmaster. 【参考方案1】:

Trevor Smith 和我使用 statsmodels 为线性回归编写了一个小前向选择函数:http://planspace.org/20150423-forward_selection_with_statsmodels/ 您可以轻松修改它以最小化 p 值,或者只需多做一点工作就可以基于 beta p 值进行选择。

【讨论】:

【参考方案2】:

你可以试试 mlxtend,它有多种选择方法。

from mlxtend.feature_selection import SequentialFeatureSelector as sfs

clf = LinearRegression()

# Build step forward feature selection
sfs1 = sfs(clf,k_features = 10,forward=True,floating=False, scoring='r2',cv=5)

# Perform SFFS
sfs1 = sfs1.fit(X_train, y_train)

【讨论】:

【参考方案3】:

您可以根据statsmodels.api.OLS模型进行前后选择,如图in this answer。

但是,this answer 描述了为什么您不应该首先对计量经济模型使用逐步选择。

【讨论】:

我想指出,数据分区应该解决大卫链接的文章中提出的过度拟合/数据挖掘问题。发布的答案之一是关于数据分区:stats.stackexchange.com/a/20860/48197 话虽如此,文本(Wiley 的商业分析数据挖掘)讨论了数据分区的方法。换句话说,stepwise 应该没问题,只要你不在生产环境中使用训练模型的结果,你需要对验证数据进行 k 折测试,最终得到一个可行的列表。【参考方案4】:

Statsmodels 有其他回归方法:http://statsmodels.sourceforge.net/devel/examples/generated/example_ols.html。我认为它将帮助您实现逐步回归。

【讨论】:

404 页面未找到 :(【参考方案5】:
"""Importing the api class from statsmodels"""
import statsmodels.formula.api as sm

"""X_opt variable has all the columns of independent variables of matrix X 
in this case we have 5 independent variables"""
X_opt = X[:,[0,1,2,3,4]]

"""Running the OLS method on X_opt and storing results in regressor_OLS"""
regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()
regressor_OLS.summary()

使用摘要方法,您可以在内核中检查您的 p 值 变量写为“P>|t|”。然后检查具有最高 p 的变量 价值。假设 x3 具有最高值,例如 0.956。然后删除此列 从您的阵列中提取并重复所有步骤。

X_opt = X[:,[0,1,3,4]]
regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()
regressor_OLS.summary()

重复这些方法,直到删除所有 p 值高于显着性值(例如 0.05)的列。最后,您的变量 X_opt 将具有 p 值小于显着性水平的所有最优变量。

【讨论】:

【参考方案6】:

我开发了这个存储库https://github.com/xinhe97/StepwiseSelectionOLS

我的逐步选择类(最佳子集、前向逐步、后向逐步)与 sklearn 兼容。你可以用我的 Classes 来做 Pipeline 和 GridSearchCV。

我的代码的基本部分如下:

################### Criteria ###################
def processSubset(self, X,y,feature_index):
    # Fit model on feature_set and calculate rsq_adj
    regr = sm.OLS(y,X[:,feature_index]).fit()
    rsq_adj = regr.rsquared_adj
    bic = self.myBic(X.shape[0], regr.mse_resid, len(feature_index))
    rsq = regr.rsquared
    return "model":regr, "rsq_adj":rsq_adj, "bic":bic, "rsq":rsq, "predictors_index":feature_index

################### Forward Stepwise ###################
def forward(self,predictors_index,X,y):
    # Pull out predictors we still need to process
    remaining_predictors_index = [p for p in range(X.shape[1])
                            if p not in predictors_index]

    results = []
    for p in remaining_predictors_index:
        new_predictors_index = predictors_index+[p]
        new_predictors_index.sort()
        results.append(self.processSubset(X,y,new_predictors_index))
        # Wrap everything up in a nice dataframe
    models = pd.DataFrame(results)
    # Choose the model with the highest rsq_adj
    # best_model = models.loc[models['bic'].idxmin()]
    best_model = models.loc[models['rsq'].idxmax()]
    # Return the best model, along with model's other  information
    return best_model

def forwardK(self,X_est,y_est, fK):
    models_fwd = pd.DataFrame(columns=["model", "rsq_adj", "bic", "rsq", "predictors_index"])
    predictors_index = []

    M = min(fK,X_est.shape[1])

    for i in range(1,M+1):
        print(i)
        models_fwd.loc[i] = self.forward(predictors_index,X_est,y_est)
        predictors_index = models_fwd.loc[i,'predictors_index']

    print(models_fwd)
    # best_model_fwd = models_fwd.loc[models_fwd['bic'].idxmin(),'model']
    best_model_fwd = models_fwd.loc[models_fwd['rsq'].idxmax(),'model']
    # best_predictors = models_fwd.loc[models_fwd['bic'].idxmin(),'predictors_index']
    best_predictors = models_fwd.loc[models_fwd['rsq'].idxmax(),'predictors_index']
    return best_model_fwd, best_predictors

【讨论】:

虽然我感谢您的贡献,但我无法抗拒,但要注意,仅在 r2 上选择模型(就像这里所做的那样?)不是一个好主意。【参考方案7】:

这是我刚刚编写的一种方法,它使用“统计学习简介”中所述的“混合选择”。作为输入,它需要:

lm,一个 statsmodels.OLS.fit(Y,X),其中 X 是 n 个数组,其中 n 是 数据点的数量和 Y,其中 Y 是训练数据中的响应

curr_preds- 带有 ['const'] 的列表

potential_preds - 所有潜在预测变量的列表。 还需要一个 pandas 数据框 X_mix,其中包含所有数据,包括“const”,以及与潜在预测变量对应的所有数据

tol,可选。最大 pvalue,如果未指定,则为 0.05

def mixed_selection (lm, curr_preds, potential_preds, tol = .05):
  while (len(potential_preds) > 0):
    index_best = -1 # this will record the index of the best predictor
    curr = -1 # this will record current index
    best_r_squared = lm.rsquared_adj # record the r squared of the current model
    # loop to determine if any of the predictors can better the r-squared  
    for pred in potential_preds:
      curr += 1 # increment current
      preds = curr_preds.copy() # grab the current predictors
      preds.append(pred)
      lm_new = sm.OLS(y, X_mix[preds]).fit() # create a model with the current predictors plus an addional potential predictor
      new_r_sq = lm_new.rsquared_adj # record r squared for new model
      if new_r_sq > best_r_squared:
        best_r_squared = new_r_sq
        index_best = curr

    if index_best != -1: # a potential predictor improved the r-squared; remove it from potential_preds and add it to current_preds
      curr_preds.append(potential_preds.pop(index_best))
    else: # none of the remaining potential predictors improved the adjust r-squared; exit loop
      break

    # fit a new lm using the new predictors, look at the p-values
    pvals = sm.OLS(y, X_mix[curr_preds]).fit().pvalues
    pval_too_big = []
    # make a list of all the p-values that are greater than the tolerance 
    for feat in pvals.index:
      if(pvals[feat] > tol and feat != 'const'): # if the pvalue is too large, add it to the list of big pvalues
        pval_too_big.append(feat)

    # now remove all the features from curr_preds that have a p-value that is too large
    for feat in pval_too_big:
      pop_index = curr_preds.index(feat)
      curr_preds.pop(pop_index)

【讨论】:

以上是关于Python中的逐步回归的主要内容,如果未能解决你的问题,请参考以下文章

Python 对线性模型进行 特征选择,不断模型线性模型的AIC

Python前向逐步回归'不在索引中'

统计科学之讲讲逐步回归

python 这演示了如何逐步计算python生成器的线性回归,以避免需要加载整个结构

主成分分析与逐步回归分析的区别

5.4 多重共线性人均网络消费回归分析——python实战