我需要取消嵌套 JSON 数组元素并确保与“ID”列正确映射

Posted

技术标签:

【中文标题】我需要取消嵌套 JSON 数组元素并确保与“ID”列正确映射【英文标题】:I need to Un-nest JSON array elements AND ensure correct mapping with 'ID' column 【发布时间】:2018-10-02 09:42:06 【问题描述】:

输入的DataFrame“df”如下(请注意'id'列的值):

| id    | name                                                                                  |
|-------|---------------------------------------------------------------------------------------|
| a1xy  | [    "event": "sports",   "start": "100",    "event": "lunch",  "start": "121"  ] |
| a7yz  | [    "event": "lunch",   "start": "109",    "event": "movie",  "start": "97"  ]   |
| bx4y  | [    "event": "dinner",   "start": "78",    "event": "sleep",  "start": "25"  ]   |

我想展平 JSON 数组元素,以便我的结果输出为:

| id    | name.event | name.start |
|-------|------------|------------|
| a1xy  | sports     | 100        |
| a1xy  | lunch      | 121        |
| a7yz  | lunch      | 109        |
| a7yz  | movie      | 97         |
| bx4y  | dinner     | 78         |
| bx4y  | sleep      | 25         |

“id”列中的值需要正确映射。如何在 Python 中做到这一点?

我试过了:

k = df.name.map(json.loads).apply(pd.DataFrame).tolist()
final_df = pd.concat(k)

但我无法映射“id”列中的值。

【问题讨论】:

pandas.pydata.org/pandas-docs/stable/generated/… 输入是json ?可以使用json_normalize 吗? 【参考方案1】:

假设您有 json 对象列表作为以下输入

data = ['id': 'a1xy', 'name': ['event': 'sports', 'start': '100','event': 'lunch', 'start': '121'],
        'id': 'a7yz', 'name': ['event':'lunch', 'start': '109','event': 'movie', 'start': '97'],
        'id': 'bx4y', 'name': ['event': 'dinner', 'start': '78','event': 'sleep', 'start': '25']]

df = json_normalize(data, record_path='name', meta='id', record_prefix='name.')
print(df)

【讨论】:

【参考方案2】:

您可以将列表理解与展平结合使用,并通过id 值更新每个字典,最后调用DataFrame 构造函数:

df['name'] = df['name'].map(json.loads)

df = pd.DataFrame([dict(y, id=i) for i, x in zip(df['id'],df['name']) for y in x])
print (df)
    event    id start
0  sports  a1xy   100
1   lunch  a1xy   121
2   lunch  a7yz   109
3   movie  a7yz    97
4  dinner  bx4y    78
5   sleep  bx4y    25

但如果输入是json,最好使用json_normalize

时间安排

df=pd.DataFrame([
['a1xy',[  "event": "sports",   "start": "100",   "event": "lunch",  "start": "121"  ]],
['a7yz',[  "event": "lunch",   "start": "109",    "event": "movie",  "start": "97"   ]],
['bx4y',[  "event": "dinner",   "start": "78",    "event": "sleep",  "start": "25"   ]]],
columns=['id','name']) 
print (df)

#3k rows
df = pd.concat([df] * 1000, ignore_index=True)

In [276]: %%timeit
     ...: pd.DataFrame([dict(y, id=i) for i, x in zip(df['id'],df['name']) for y in x])
9.49 ms ± 230 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [277]: %%timeit
     ...: finalArray=[]
     ...: df.apply(lambda x: addtoArray(x,finalArray),axis=1)
     ...: pd.DataFrame(finalArray,columns=['col1','event','start'])
     ...: 
1.81 s ± 33.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

列表理解解决方案更快180x

【讨论】:

我如何“以编程方式”将“id”列的元素添加到“name”列中?我想使用 json_normalize @Symphony - json 看起来怎么样? @Symphony - 就像['id': 'a1xy', 'name': ['event': 'sports', 'start': '100','event': 'lunch', 'start': '121'], 'id': 'a7yz', 'name': ['event':'lunch', 'start': '109','event': 'movie', 'start': '97'], 'id': 'bx4y', 'name': ['event': 'dinner', 'start': '78','event': 'sleep', 'start': '25']] ? [ "event": "sports", "start": "100", "event": "lunch", "start": "121" ] [ "id": "a1xy", "event": "sports", "start": "100", "id": "a1xy", "event": "lunch ", "开始": "121" ]【参考方案3】:

您也可以在 apply 函数中使用外部函数

import json
data=pd.DataFrame([
['a1xy',[  "event": "sports",   "start": "100",   "event": "lunch",  "start": "121"  ]],
['a7yz',[  "event": "lunch",   "start": "109",    "event": "movie",  "start": "97"   ]],
['bx4y',[  "event": "dinner",   "start": "78",    "event": "sleep",  "start": "25"   ]]],columns=['id','name']) 

def addtoArray(x,finalArray):
    finalArray.extend(np.insert(pd.DataFrame(x['name']).values,0,x['id'],axis=1).tolist())

finalArray=[]
data.apply(lambda x: addtoArray(x,finalArray),axis=1)
finalArray=pd.DataFrame(finalArray,columns=['col1','event','start'])
print(finalArray)

   col1   event start
0  a1xy  sports   100
1  a1xy   lunch   121
2  a7yz   lunch   109
3  a7yz   movie    97
4  bx4y  dinner    78
5  bx4y   sleep    25

【讨论】:

以上是关于我需要取消嵌套 JSON 数组元素并确保与“ID”列正确映射的主要内容,如果未能解决你的问题,请参考以下文章

BigQuery 取消嵌套数组 - 获取重复项

查询嵌套 JSON 数组 PostgreSQL 中的所有元素

Pandas:将 DataFrame 与嵌套数组结合或合并 JSON 输出

如何在 Presto 中交叉加入取消嵌套 JSON 数组

在 BigQuery 中取消嵌套 JSON 字符串化数组

展平/取消展平嵌套 JSON 对象的最快方法