提高 for 循环效率
Posted
技术标签:
【中文标题】提高 for 循环效率【英文标题】:Improve for loop efficiency 【发布时间】:2019-11-06 17:39:20 【问题描述】:我正在尝试将包含事件 Web 数据的 12,000 个 JSON 文件转换为单个 pandas 数据帧。 代码运行时间过长。 关于如何提高效率的任何想法?
加载的 JSON 文件示例:
'$schema': 12,
'amplitude_id': None,
'app': '',
'city': ' ',
'device_carrier': None,
'dma': ' ',
'event_time': '2018-03-12 22:00:01.646000',
'group_properties': '[Segment] Group': '': ,
'ip_address': ' ',
'os_version': None,
'paying': None,
'platform': 'analytics-ruby',
'processed_time': '2018-03-12 22:00:06.004940',
'server_received_time': '2018-03-12 22:00:02.993000',
'user_creation_time': '2018-01-12 18:57:20.212000',
'user_id': ' ',
'user_properties': 'initial_referrer': '',
'last_name': '',
'organization_id': 2,
'uuid': ' ',
'version_name': None
谢谢!
import os
import pandas as pd
data = pd.DataFrame()
for filename in os.listdir('path'):
file = open(filename, "r")
file_read1 = file.read()
file_read1 = pd.read_json(file_read1, lines = True)
data = data.append(file_read1, ignore_index = True)
【问题讨论】:
您能否举例说明文件和 JSON 格式中的数据是什么样的?构建一个大型 json 然后将其制成 Dataframe 可能会更快。此方法也可能导致内存问题,因为它会创建一个新的数据框对象 12,000 次。 请将其编辑到您的原始问题中,cmets 不适合显示数据或格式 是的,不要在循环中使用.append
数据帧。这是非常低效的。创建一个数据框列表,然后在结果列表中使用pd.concat
。
【参考方案1】:
将 JSON 字符串转换为数据帧的最快方法似乎是 pd.io.json.json_normalize
。根据 JSON 的数量,它比附加到现有数据帧快 15 到 >500 倍。它比 pd.concat
高出 13 到 170 倍。
副作用是 JSON 的嵌套部分(group_properties
和 user_properties
)也被展平,dtypes
需要手动设置。
12,000 个 JSON 的运行时(不考虑磁盘 I/O)
追加:~177 秒 连续:~126 秒 json_normalize:~0.7 秒import pandas as pd
import json
import os
data = []
for filename in os.listdir('path'):
with open(filename, 'r') as f:
data.append(f)
# read one JSON and use it as a reference dataframe
df_ref = pd.read_json(data[0], lines=True)
# create a temporary dataframe, get its column 0 and flatten it via json_normalize
df_temp = pd.DataFrame(data)[0]
df = pd.io.json.json_normalize(df_temp.apply(json.loads))
# fix the column dtypes
for col, dtype in df_ref.dtypes.to_dict().items():
if col not in df.columns:
continue
df[col] = df[col].astype(dtype, inplace=True)
完整代码
import pandas as pd
import json
import time
j = '$schema': 12,
'amplitude_id': None,
'app': '',
'city': ' ',
'device_carrier': None,
'dma': ' ',
'event_time': '2018-03-12 22:00:01.646000',
'group_properties': '[Segment] Group': '': ,
'ip_address': ' ',
'os_version': None,
'paying': None,
'platform': 'analytics-ruby',
'processed_time': '2018-03-12 22:00:06.004940',
'server_received_time': '2018-03-12 22:00:02.993000',
'user_creation_time': '2018-01-12 18:57:20.212000',
'user_id': ' ',
'user_properties': 'initial_referrer': '',
'last_name': '',
'organization_id': 2,
'uuid': ' ',
'version_name': None
json_str = json.dumps(j)
def df_append():
t0 = time.time()
df = pd.DataFrame()
for _ in range(n_lines):
file_read1 = pd.read_json(json_str, lines=True)
df = df.append(file_read1, ignore_index=True)
return df, time.time() - t0
def df_concat():
t0 = time.time()
data = []
for _ in range(n_lines):
file_read1 = pd.read_json(json_str, lines=True)
data.append(file_read1)
df = pd.concat(data)
df.index = list(range(len(df)))
return df, time.time() - t0
def df_io_json():
df_ref = pd.read_json(json_str, lines=True)
t0 = time.time()
data = []
for _ in range(n_lines):
data.append(json_str)
df = pd.io.json.json_normalize(pd.DataFrame(data)[0].apply(json.loads))
for col, dtype in df_ref.dtypes.to_dict().items():
if col not in df.columns:
continue
df[col] = df[col].astype(dtype, inplace=True)
return df, time.time() - t0
n_datapoints = (10, 10**2, 10**3, 12000, 10**4, 10**5)
times =
for n_lines in n_datapoints:
times[n_lines] = [[], [], []]
for _ in range(3):
df1, t1 = df_append()
df2, t2 = df_concat()
df3, t3 = df_io_json()
times[n_lines][0].append(t1)
times[n_lines][1].append(t2)
times[n_lines][2].append(t3)
pd.testing.assert_frame_equal(df1, df2)
pd.testing.assert_frame_equal(df1[df1.columns[0:7]], df3[df3.columns[0:7]])
pd.testing.assert_frame_equal(df2[df2.columns[8:16]], df3[df3.columns[7:15]])
pd.testing.assert_frame_equal(df2[df2.columns[17:]], df3[df3.columns[18:]])
for i in range(3):
times[n_lines][i] = sum(times[n_lines][i]) / 3
times
x = n_datapoints
fig = plt.figure()
plt.plot(x, [t[0] for t in times.values()], 'o-', label='append')
plt.plot(x, [t[1] for t in times.values()], 'o-', label='concat')
plt.plot(x, [t[2] for t in times.values()], 'o-', label='json_normalize')
plt.xlabel('number of JSONs', fontsize=16)
plt.ylabel('time in seconds', fontsize=18)
plt.yscale('log')
plt.legend()
plt.show()
【讨论】:
以上是关于提高 for 循环效率的主要内容,如果未能解决你的问题,请参考以下文章