用熊猫将一行分成多个组
Posted
技术标签:
【中文标题】用熊猫将一行分成多个组【英文标题】:Grouping a row into multiple groups with pandas 【发布时间】:2016-03-14 05:01:28 【问题描述】:我有一组句子,我想对它们进行分组,这样组中的所有行都应该共享一个特定的单词。然而,一个句子可以属于许多组,因为它有很多单词。
所以在下面的例子中,应该有一个这样的组:
包含所有行(0、1、2、3 和 4)的“温度”组 包含第 2 行和第 4 行的“冻结”组 包含第 0、1、2 和 3 行的“the”组 仅包含第 0 行的“金属”组。 数据集中每个其他单词的组import pandas as pd
# An example data set
df = pd.DataFrame("sentences": [
"two long pieces of metal fixed together, each of which bends a different amount when they are both heated to the same temperature",
"the temperature at which a liquid boils",
"a system for measuring temperature that is part of the metric system, in which water freezes at 0 degrees and boils at 100 degrees",
"a unit for measuring temperature. Measurements are often expressed as a number followed by the symbol °",
"a system for measuring temperature in which water freezes at 32º and boils at 212º"
])
# Create a new series which is a list of words in each "sentences" column
df['words'] = df['sentences'].apply(lambda sentence: sentence.split(" "))
# Try to group by this new column
df.groupby('words').count()
# TypeError: unhashable type: 'list'
但是我的代码抛出了一个错误,如图所示。(见下文)
由于我的任务有点复杂,我知道它可能不仅仅涉及调用 groupby()。有人可以帮我用熊猫做词组吗?
edit 在通过返回tuple(sentence.split())
(感谢ethan-furman)解决了错误后,我尝试打印结果,但它似乎没有做任何事情。我认为它可能只是将每一行放在一个组中:
print(df.groupby('words').count())
# sentences 5
# dtype: int64
【问题讨论】:
【参考方案1】:要修复您的 TypeError
,您可以将您的 lambda
更改为
lambda sentence: tuple(sentence.split())
这将返回 tuple
而不是 list
(以及 tuples
和可散列的)。
【讨论】:
这确实解决了错误,但我仍然无法得到正确的结果(见编辑)【参考方案2】:您可以使用集合,以便每个单词都是唯一的。首先,我们需要得到所有句子中所有单词的列表。为此,我们将单词初始化为一个空集,然后使用列表推导在每个句子中添加每个小写单词(在拆分句子之后)。
接下来,我们使用字典推导来构建一个以单词集中每个单词为关键字的字典。该值是包含包含该单词的每个句子的数据框。这些是通过对函数 groupby(df.sentences.str.contains(word, case=False))
进行分组,然后获取条件为 True
的每个组来获得的。
words = set()
_ = [words.add(word.lower()) for sentence in df.sentences for word in sentence.split()]
word_dict = word: df.groupby(df.sentences.str.contains(word, case=False)).get_group(True)
for word in words
>>> word_dict['temperature']
sentences
0 two long pieces of metal fixed together, each ...
1 the temperature at which a liquid boils
2 a system for measuring temperature that is par...
3 a unit for measuring temperature. Measurements...
4 a system for measuring temperature in which wa...
>>> word_dict['freezes']
sentences
2 a system for measuring temperature that is par...
4 a system for measuring temperature in which wa...
>>> words
'0',
'100',
'212\xc2\xba',
'32\xc2\xba',
'a',
'amount',
'and',
'are',
'as',
'at',
'bends',
...
获取每个单词的索引值字典:
>>> word: word_dict[word].index.tolist() for word in word_dict
'0': [2],
'100': [2],
'212\xc2\xba': [4],
'32\xc2\xba': [4],
'a': [0, 1, 2, 3, 4],
'amount': [0],
'and': [2, 4],
'are': [0, 3],
'as': [2, 3, 4],
'at': [0, 1, 2, 3, 4],
'bends': [0],
'boils': [1, 2, 4],
'both': [0],
'by': [3],
'degrees': [2],
'different': [0],
'each': [0],
'expressed': [3],
'fixed': [0],
'followed': [3],
'for': [2, 3, 4],
'freezes': [2, 4],
...
或者一个布尔指标矩阵。
>>> [df.sentences.str.contains(word, case='lower').tolist() for word in word_dict]
[[False, False, True, False, True],
[False, False, False, True, False],
[True, False, False, False, False],
[False, False, True, False, False],
...
【讨论】:
【参考方案3】:我当前的解决方案使用 pandas 的 MultiIndex 功能。我确信可以通过更有效地使用 numpy 来改进它,但我相信这将比其他仅 python 的答案表现得更好:
import pandas as pd
import numpy as np
# An example data set
df = pd.DataFrame("sentences": [
"two long pieces of metal fixed together, each of which bends a different amount when they are both heated to the same temperature",
"the temperature at which a liquid boils",
"a system for measuring temperature that is part of the metric system, in which water freezes at 0 degrees and boils at 100 degrees",
"a unit for measuring temperature. Measurements are often expressed as a number followed by the symbol °",
"a system for measuring temperature in which water freezes at 32º and boils at 212º"
])
# Create a new series which is a list of words in each "sentences" column
df['words'] = df['sentences'].apply(lambda sentence: sentence.split(" "))
# This is all the words in the dataset. Each word will be its own index (level of the MultiIndex)
names = np.unique(df['words'].sum())
# Create an array of tuples, one tuple for each row of data
# Each tuple contains True if the row has that word in it, and False if it does not
values = df['words'].map(
lambda words: np.vectorize(
lambda word:
True if word in words else False)(names)
)
# Make a multindex
index = pd.MultiIndex.from_tuples(values, names=names)
# Add the MultiIndex without creating a new data frame
df.set_index(index, inplace=True)
# Find all the rows that have the word 'temperature'
xs = df.xs(True, level='temperature')
print(xs.to_string(index=False))
【讨论】:
这个解决方案还有效吗?你找到更好的东西了吗?以上是关于用熊猫将一行分成多个组的主要内容,如果未能解决你的问题,请参考以下文章