从具有包含 NaN 的 MultiIndex 索引的数据帧中获取值

Posted

技术标签:

【中文标题】从具有包含 NaN 的 MultiIndex 索引的数据帧中获取值【英文标题】:Get values from dataframe with MultiIndex index containg NaNs 【发布时间】:2021-11-21 04:30:33 【问题描述】:

我无法访问其中包含nan 的索引位置的值,我想知道如何解决这个问题。 (在我的项目中这个索引有非常特殊的含义,我真的需要保留它,否则我需要进行一些肮脏的手动修改:“总有解决方案”,即使它是一个非常糟糕的解决方案。

df
Out
temp_playlist  objId
0              o1           [0, 6]
               o2           [1, 4]
               o3           [2, 5]
               o4       [8, 9, 12]
               o5         [10, 13]
               o6         [11, 14]
               NaN          [3, 7]
Name: x, dtype: object

df.index
Out
MultiIndex([(0, 'o1'),
            (0, 'o2'),
            (0, 'o3'),
            (0, 'o4'),
            (0, 'o5'),
            (0, 'o6'),
            (0,  nan)],
           names=['temp_playlist', 'objId'])

现在我想以df.loc[(0, np.nan)] 的形式访问[3, 7] 值并获得KeyError: (0, nan) 错误。

简单地说:[df.loc[idx] for idx in df.index if not pd.isna(idx[1])] 工作正常,因为我跳过了有问题的索引。

我错过了什么,我该如何解决?

(Windows 10,python 3.8.5,pandas 1.3.1,numpy 1.20.3,报告给pandas here)

【问题讨论】:

一个想法 - 如果使用 None 可以进行测试? 我尝试手动创建索引为pd.MultiIndex.from_arrays([[0, 0, 0, 0, 0, 0, 0], ['o1', 'o2', 'o3', 'o4', 'o5', 'o6', None]], names=('temp_playlist', 'objId')),而None 被转换为np.nan。结果与问题中发布的完全相同的索引。 很遗憾。 同样失败df.loc[(0, 'nan')] ? 是的,还有KeyError,但是这个很清楚,但这给了我一个想法。现在这个想法是一个“糟糕的解决方案”,但它会是:df.index = [str(idx) for idx in df.index]; df.loc['(0, nan)']。我不会发布这个“解决方案”作为我不会接受的答案;) 【参考方案1】:

更新

在对数据框进行分组和聚合后,我能够重现您的错误。

>>> import pandas as pd
>>> data = pd.DataFrame(
...     "temp_playlist": [0] * 15,
...     "objId": ['o1'] * 2 + ['o2'] * 2 + ['o3'] * 2 + ['o4'] * 3 + ['o5'] * 2 + ['o6'] * 2 + [pd.NA] * 2,
...     "vals": [0, 6, 1, 4, 2, 5, 8, 9, 12, 10, 13, 11, 14, 3, 7]
... )
>>> df = data.groupby(["temp_playlist", "objId"], dropna=False).agg(list)
>>> df.loc[(0, pd.NA)]
Traceback (most recent call last):
  File "/home/ec2-user/miniconda3/envs/so-pandas-nan-index/lib/python3.8/site-packages/pandas/core/indexes/base.py", line 3361, in get_loc
    return self._engine.get_loc(casted_key)
  File "pandas/_libs/index.pyx", line 76, in pandas._libs.index.IndexEngine.get_loc
  File "pandas/_libs/index.pyx", line 108, in pandas._libs.index.IndexEngine.get_loc
  File "pandas/_libs/hashtable_class_helper.pxi", line 5198, in pandas._libs.hashtable.PyObjectHashTable.get_item
  File "pandas/_libs/hashtable_class_helper.pxi", line 5206, in pandas._libs.hashtable.PyObjectHashTable.get_item
KeyError: <NA>

不过,传入一个显式 MultiIndex 是可行的。

>>> df.loc[pd.MultiIndex.from_tuples([(0, pd.NA)], names=["temp_playlist", "objId"])]
                       vals
temp_playlist objId
0             NaN    [3, 7]

>>> df.loc[pd.MultiIndex.from_tuples([(0, pd.NA)])]
         vals
0 NaN  [3, 7]

使用单个元组返回数据帧也是如此。注意使用[[]] 返回一个DataFrame。

>>> df.loc[[(0, pd.NA)]]
                       vals
temp_playlist objId
0             NaN    [3, 7]

DataFrame.reindex 也是如此(另请参阅user guide on reindexing)。

>>> df.reindex([(0, pd.NA)])
                       vals
temp_playlist objId
0             NaN    [3, 7]

重现错误的原始尝试

我无法重现您的错误。您可以在下面看到使用df.loc[(0, np.nan)] 有效。

Python 3.8.5 (default, Sep  4 2020, 07:30:14)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy as np
>>> import pandas as pd
>>> nan_index = pd.MultiIndex.from_tuples([(0, 'o1'),
            (0, 'o2'),
            (0, 'o3'),
            (0, 'o4'),
            (0, 'o5'),
            (0, 'o6'),
            (0,  np.nan)])
>>> print(nan_index)
MultiIndex([(0, 'o1'),
            (0, 'o2'),
            (0, 'o3'),
            (0, 'o4'),
            (0, 'o5'),
            (0, 'o6'),
            (0,  nan)],
           )
>>> rng = np.random.default_rng(42)
>>> vals = [rng.choice(20, 2) for i in range(nan_index.shape[0])]
>>> print(vals)
[array([ 1, 15]), array([13,  8]), array([ 8, 17]), array([ 1, 13]), array([4, 1]), array([10, 19]), array([14, 15])]
>>> df = pd.DataFrame("vals": vals, index=nan_index)
>>> print(df)
           vals
0 o1    [1, 15]
  o2    [13, 8]
  o3    [8, 17]
  o4    [1, 13]
  o5     [4, 1]
  o6   [10, 19]
  NaN  [14, 15]
>>> print(df.loc[(0, 'o1')])
vals    [1, 15]
Name: (0, o1), dtype: object
>>> print(df.loc[(0, np.nan)])
vals    [14, 15]
Name: (0, nan), dtype: object
>>> print(pd.__version__)
1.3.1

然后我注意到您的索引打印为(0, nan),但我的索引为(0, np.nan)。不同之处在于我使用了np.nan,而我怀疑你使用的是pd.NA

>>> nan_index = pd.MultiIndex.from_tuples([(0, 'o1'),
            (0, 'o2'),
            (0, 'o3'),
            (0, 'o4'),
            (0, 'o5'),
            (0, 'o6'),
            (0,  pd.NA)])
>>> nan_index
MultiIndex([(0, 'o1'),
            (0, 'o2'),
            (0, 'o3'),
            (0, 'o4'),
            (0, 'o5'),
            (0, 'o6'),
            (0,  nan)],
           )
>>> df = pd.DataFrame("vals": vals, index=nan_index)
>>> df
           vals
0 o1    [1, 15]
  o2    [13, 8]
  o3    [8, 17]
  o4    [1, 13]
  o5     [4, 1]
  o6   [10, 19]
  NaN  [14, 15]

但是,这并没有解决差异。我仍然可以使用df.loc[(0, np.nan)]

>>> df.loc[(0, pd.NA)]
vals    [14, 15]
Name: (0, nan), dtype: object

>>> df.loc[(0, np.nan)]
vals    [14, 15]
Name: (0, nan), dtype: object

此外,我还可以使用df.loc[(0, None)]

>>> df.loc[(0, None)]
vals    [14, 15]
Name: (0, nan), dtype: object

确认一下,np.nanpd.NANone 都是不同的对象。与DataFrame.loc 一起使用时,Pandas 必须同样对待它们。

>>> pd.NA is np.nan
False

>>> pd.NA is None
False

>>> np.nan is None
False

>>> type(pd.NA)
<class 'pandas._libs.missing.NAType'>

>>> type(np.nan)
<class 'float'>

【讨论】:

[...] Passing in an explit MultiIndex works, though [...] 非常有趣。 Tks,这似乎比我的和@jezrael 的“更好的解决方案”。 仍然看起来像一个错误。我的意思是,为什么 df.loc[[(0, &lt;any pd compatible NaN variation&gt;]] 会工作并实际返回该索引处的数据列表(例如 [[3, 7]])?【参考方案2】:

NaN 替换为NA 的想法:

i = pd.MultiIndex.from_tuples([(0, 'o1'),
            (0, 'o2'),
            (0, 'o3'),
            (0, 'o4'),
            (0, 'o5'),
            (0, 'o6'),
            (0,  np.nan)])

df = pd.DataFrame('a':0, index=i)

df = df.rename(lambda x: 'NA' if pd.isna(x) else x, level=1)
print (df)
      a
0 o1  0
  o2  0
  o3  0
  o4  0
  o5  0
  o6  0
  NA  0

df.loc[(0, 'NA')]

【讨论】:

感谢答案,但这与我的答案有些相似。我会等几天,如果没有人有其他解决方案,我会把它作为一个 bug 放到 pandas git 中。【参考方案3】:

一个“糟糕的解决方案”,不是真正解决根本问题,而是提供一个可行的解决方案,将索引转换为字符串(str 构造函数在这里能够产生惊人的结果)。

df.index = [str(idx) for idx in df.index]
df
Out 
(0, 'o1')        [0, 6]
(0, 'o2')        [1, 4]
(0, 'o3')        [2, 5]
(0, 'o4')    [8, 9, 12]
(0, 'o5')      [10, 13]
(0, 'o6')      [11, 14]
(0, nan)         [3, 7]
Name: x, dtype: object

df.index
Out
Index(['(0, 'o1')', '(0, 'o2')', '(0, 'o3')', '(0, 'o4')', '(0, 'o5')',
       '(0, 'o6')', '(0, nan)'],
      dtype='object')

xy_data[0].loc['(0, nan)']  # or
xy_data[0].loc[str((0, nan))]

【讨论】:

以上是关于从具有包含 NaN 的 MultiIndex 索引的数据帧中获取值的主要内容,如果未能解决你的问题,请参考以下文章

对包含 str 和元组的 Pandas MultiIndex 进行排序

为啥在具有一级索引的 MultiIndex 列的 pandas DataFrame 中表现不同?

按特定索引值过滤具有 MultiIndex 的数据帧 [重复]

重新索引系列返回 Pandas 中的 NaN

连接两个具有不同索引级别数的 MultiIndex DataFrame

从具有多个切片的 pandas MultiIndex 中检索列 [重复]