Pandas:按最大值分组和对组求和的最快方法
Posted
技术标签:
【中文标题】Pandas:按最大值分组和对组求和的最快方法【英文标题】:Pandas: Fastest way to group by max and summing over the group 【发布时间】:2021-02-19 13:41:39 【问题描述】:这就是我想要实现的目标:
input:
B C D
A
x z 1 10
x z 2 11
x z 3 12
y s 4 13
y s 5 14
output:
B C D sum
A
x z 3 12 33
y s 5 14 27
我有以下代码。
import pandas as pd
df = pd.DataFrame('A': ['x','x','x','y','y'],
'B': ['z','z','z','s','s'],
'C': [1,2,3,4,5],
'D': [10,11,12,13,14])
df = df.set_index('A')
df['sum'] = df.groupby('A')['D'].transform('sum')
idx = df.groupby(['A'])['C'].transform(max) == df['C']
df= df[idx]
我在一个相当大的 Dataframe 上执行此操作。不过这需要很长时间,尤其是第一组。 有什么方法可以加快这个过程吗? 因为我要做的就是对一个组求和,并保留不同列最大的行。
【问题讨论】:
【参考方案1】:总的来说,我相信你的方法是可行的,除了一些改进:
# no need to set_index. Do so on smaller/filtered data if needed
# df = df.set_index('A')
# this is good
df['sum'] = df.groupby('A')['D'].transform('sum')
# there's a bit difference between `'max'` and `max`.
# one is vectorized, one is not
idx = df.groupby(['A'])['C'].transform('max') == df['C']
df= df[idx]
另一个改进是你可以做lazy groupby:
groups = df.groupby('A')
df['sum'] = groups['D'].transform('sum')
idx = groups['C'].transform('max') == df['C']
df = df[idx]
【讨论】:
【参考方案2】: df.groupby('B').agg(B=('C','max'), C=('D','max'), Sum=('D','sum')).rename_axis('A', axis=0)
B C Sum
A
s 5 14 27
z 3 12 33
【讨论】:
根据 OP 的代码,保留最后一行可能与保留max
不同,特别是保留 all max。
我觉得你是对的,那就去df.groupby('B').agg(B=('C','max'), C=('D','max'), Sum=('D','sum'))
如果我有更多的列而不是 B,我想在最终的 df 中“拖动”。会变得非常指挥。
在多重聚合中,列的命名几乎无法避免。话虽如此,也许还有其他选择,请寻求最佳答案。【参考方案3】:
试试这个:
tmp = df.groupby('A').agg(
idx = ('C', 'idxmax'),
D = ('D', 'sum')
)
result = df.loc[tmp['idx']].set_index('A').assign(D=tmp['D'])
【讨论】:
【参考方案4】:目前看来最快的解决方案是由 wwnde 提供的。
我的贡献(比原来的方法快,但比其他方法慢):
df['sum'] = df.groupby('A')['D'].transform('sum')
df = df.loc[df.groupby('A').C.idxmax()]
使用@Quang Hoang 提示可以加快速度:
groups = df.groupby('A')
df['sum'] = groups['D'].transform('sum')
df = df.loc[ groups.C.idxmax()].set_index('A')
基准测试
# Import libraries
import numpy as np
import pandas as pd
from time import time
import seaborn as sns
import matplotlib.pyplot as plt
# Make fake data with 10M rows and 10 target-groups
values = np.arange(10**7)
groups = [f'groupi' for i in range(1,11) for j in range(int(len(values)/10))]
unused_col = [letter for letter in 'abcdefghij' for j in range(int(len(values)/10))]
df = pd.DataFrame(dict(A=groups, B=unused_col, C=values*0.01, D=values))
# Define functions
def caina_max(df):
df = df.copy()
groups = df.groupby('A')
df['sum'] = groups['D'].transform('sum')
df = df.loc[ groups.C.idxmax()].set_index('A')
return df
def Code_Different(df):
df = df.copy()
tmp = df.groupby('A').agg(
idx = ('C', 'idxmax'),
D = ('D', 'sum'))
df = df.loc[tmp['idx']].set_index('A').assign(Sum=tmp['D'])
return df
def Muriel(df):
df = df.copy()
df = df.set_index('A')
df1 = df.groupby(['A','B']).max()
df2 = df.groupby('A')['D'].sum()
df = df1.join(df2, lsuffix='_caller', rsuffix='_other')
df = df.reset_index(level=1).rename(columns='D_caller': 'D', 'D_other': 'Sum')
return df
def Quang_Hoang(df):
df = df.copy()
groups = df.groupby('A')
df['sum'] = groups['D'].transform('sum')
idx = groups['C'].transform('max') == df['C']
df = df[idx].set_index('A')
return df
def valenzio(df):
df.copy()
df = df.set_index('A')
df['sum'] = df.groupby('A')['D'].transform('sum')
idx = df.groupby(['A'])['C'].transform(max) == df['C']
df= df[idx]
return df
def wwnde(df):
df = df.copy()
df = df.groupby('B').agg(B=('C','max'), C=('D','max'), Sum=('D','sum')).rename_axis('A', axis=0)
return df
# Benchmark
functions = caina_max, Code_Different, Muriel, Quang_Hoang, valenzio, wwnde
times = f.__name__: [] for f in functions
for func in functions:
fname = func.__name__
for i in range(100): # reduce this range for faster reproducibility
t0=time()
func(df)
t1=time()
times[fname].append((t1-t0))
# Benchmark table
df_benchmark = pd.DataFrame(times).agg([np.mean, np.std, max, min]).T.sort_values('mean').round(3)
df_benchmark.index.name = 'Approach'
# Benchmark figure
plt.figure(figsize=(12,8))
sns.boxplot(data=pd.melt(pd.DataFrame(times)), x='variable', y='value', )
plt.xticks(rotation=45)
plt.title(label='Benchmark', fontweight="bold", pad=20)
plt.ylabel('Time in seconds', labelpad=10)
plt.xlabel('')
plt.show()
输出:
mean std max min
Approach
wwnde 1.165 0.009 1.198 1.148
Quang_Hoang 1.488 0.039 1.659 1.439
Code_Different 1.532 0.027 1.638 1.500
caina_max 1.680 0.030 1.813 1.641
valenzio 2.847 0.036 3.030 2.805
Muriel 3.598 0.025 3.666 3.549
【讨论】:
出色的工作!看起来@Quang_Hoang 是最好的解决方案,因为他的代码对于具有多列的 DF 是可扩展的。但是,如果您只有几列和大量数据,则应考虑 wwnde 中的方法。【参考方案5】:这应该更快:
df = pd.DataFrame('A': ['x','x','x','y','y'],
'B': ['z','z','z','s','s'],
'C': [1,2,3,4,5],
'D': [10,11,12,13,14])
df = df.set_index('A')
df1 = df.groupby(['A','B']).max()
df2 = df.groupby('A')['D'].sum()
df1.join(df2, lsuffix='_caller', rsuffix='_other')
【讨论】:
这在你的内存上并不容易。不过我明天试试。以上是关于Pandas:按最大值分组和对组求和的最快方法的主要内容,如果未能解决你的问题,请参考以下文章