多元线性回归模型的等高线图

Posted

技术标签:

【中文标题】多元线性回归模型的等高线图【英文标题】:Contour plot for multi linear regression model 【发布时间】:2021-12-20 00:03:08 【问题描述】:

我必须使用以下变量获取等高线图以获得一系列最佳值:

X axis = SiO2/Al2O3
Y axis = Precursor/Aggregate
Z axis = Compressive Strength

我的代码如下

import numpy as np
import matplotlib as mlt
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score

dataset = pd.read_csv('Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)

regressor = LinearRegression()
regressor.fit(X_train, y_train)
y_predict = regressor.predict(X_test)

feature_x = X_test[:, 1]
feature_y = X_test[:, 3]

[X, Y] = np.meshgrid(feature_x, feature_y)  
Z = y_predict    

ax.contourf(X, Y, Z)  
ax.set_title('Filled Contour Plot')
ax.set_xlabel('SiO2/Al2O3')
ax.set_ylabel('Precursor/Aggregate')
plt.show()

但它给出了这个错误

TypeError: Input z must be 2D, not 1D

我想我在 Z 轴输入中犯了一个错误。

数据可用at this link。

预期输出:

【问题讨论】:

也许你需要Z = y_predict.reshape(X.shape) 【参考方案1】:

您的代码将不起作用,您需要为您的预测值创建一个网格,首先我们读取您的数据并进行拟合:

dataset = pd.read_csv('Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)

regressor = LinearRegression()
regressor.fit(X_train, y_train)

然后你需要为你感兴趣的特征创建一个网格:

feature_x = np.linspace(X_test[:, 1].min(),X_test[:, 1].max(),100)
feature_y = np.linspace(X_test[:, 3].min(),X_test[:, 3].max(),100)

网格:

dim1, dim2 = np.meshgrid(feature_x, feature_y)

现在,您的模型还有 6 个其他预测变量需要您提供以进行拟合。一种方法是将这些其他变量保持在它们的平均值,然后我们在网格中插入:

mesh_df = np.array([X_test.mean(axis=0) for i in range(dim1.size)])
mesh_df[:,1] = dim1.ravel()
mesh_df[:,2] = dim2.ravel()

现在预测、重塑和绘制:

Z = regressor.predict(mesh_df).reshape(dim1.shape)  

fig, ax = plt.subplots()

ax.contourf(dim1, dim2, Z)  
ax.set_title('Filled Contour Plot')
ax.set_xlabel('SiO2/Al2O3')
ax.set_ylabel('Precursor/Aggregate')
plt.show()

看起来像这样,因为您使用的是线性回归,值将随变量线性增加或减少:

【讨论】:

以上是关于多元线性回归模型的等高线图的主要内容,如果未能解决你的问题,请参考以下文章

多元线性回归模型用r语言怎么来实现

多元线性回归模型

关于多元线性回归模型的显著性检验

怎么对多元线性回归模型的回归系数β做t检验和F检验

以下回归模型中属于线性回归模型的都有哪些

多元线性回归模型在1%的情况下显著是怎么看的