从包含 JSON 的 CSV 文件创建 Pandas DataFrame
Posted
技术标签:
【中文标题】从包含 JSON 的 CSV 文件创建 Pandas DataFrame【英文标题】:Creating a Pandas DataFrame from a CSV file with JSON in it 【发布时间】:2017-10-04 12:28:12 【问题描述】:我有一个 Postgres 数据库,其中两列是 jsonb 数据。我使用此命令获取数据库的 CSV 副本:\copy (SELECT * FROM articles) TO articles.csv CSV DELIMITER ‘,’ HEADER
我正在使用 Python 3.6。当我使用 read_csv
将此 CSV 文件加载到 Pandas 数据帧中时,我得到所有 json 数据的双重编码字符串:
例如articles.iloc[0]['word_count']
给我:
'"\\"he\\":8,\\"is\\":8,\\"a\\":26,\\"wealthy\\":1,\\"international\\":2,\\"entrepreneur\\":1,\\"known\\":3,\\"for\\":9,\\"generous\\":1,\\"donations\\":2,\\"to\\":17,\\"his\\":6,\\"alma\\":1,\\"mater\\":1,\\"harvard\\":11,\\"now\\":2,\\"court\\":12,\\"says\\":1,\\"the\\":51,\\"university\\":3,\\"must\\":2,\\"cooperate\\":1,\\"in\\":21,\\"hunt\\":1,\\"assets\\":3,\\"federal\\":2,\\"judge\\":2,\\"boston\\":3,\\"has\\":4,\\"ruled\\":2,\\"that\\":10,\\"provide\\":1,\\"testimony\\":1,\\"and\\":11,\\"produce\\":1,\\"documents\\":3,\\"disclosing\\":1,\\"bank\\":1,\\"accounts\\":1,\\"routing\\":1,\\"numbers\\":1,\\"wire\\":1,\\"transfers\\":1,\\"other\\":2,\\"interbank\\":1,\\"messages\\":1,\\"used\\":1,\\"by\\":11,\\"an\\":6,\\"alumnus\\":1,\\"charles\\":1,\\"c\\":2,\\"spackman\\":19,\\"send\\":1,\\"money\\":2,\\"mr\\":19,\\"hong\\":5,\\"kongbased\\":1,\\"businessman\\":1,\\"leads\\":2,\\"group\\":4,\\"global\\":1,\\"investment\\":1,\\"holding\\":1,\\"company\\":10,\\"with\\":3,\\"billion\\":1,\\"under\\":1,\\"management\\":1,\\"ruling\\":4,\\"places\\":1,\\"ivy\\":1,\\"league\\":1,\\"college\\":1,\\"uncomfortable\\":1,\\"predicament\\":1,\\"of\\":19,\\"revealing\\":1,\\"confidential\\":1,\\"financial\\":1,\\"information\\":3,\\"gleaned\\":1,\\"from\\":2,\\"influential\\":1,\\"benefactor\\":1,\\"no\\":2,\\"small\\":1,\\"donor\\":1,\\"according\\":2,\\"website\\":1,\\"sponsors\\":1,\\"scholarship\\":2,\\"fund\\":1,\\"asian\\":1,\\"students\\":1,\\"at\\":2,\\"harvardasia\\":1,\\"council\\":1,\\"served\\":1,\\"as\\":2,\\"cochairman\\":1,\\"reunion\\":1,\\"gifts\\":1,\\"class\\":1,\\"year\\":1,\\"also\\":2,\\"korean\\":6,\\"name\\":1,\\"yoo\\":1,\\"shin\\":1,\\"choi\\":1,\\"obtained\\":1,\\"undergraduate\\":1,\\"degree\\":1,\\"economics\\":1,\\"spokeswoman\\":1,\\"melodie\\":1,\\"jackson\\":1,\\"said\\":8,\\"would\\":2,\\"not\\":5,\\"comment\\":2,\\"on\\":4,\\"order\\":1,\\"part\\":1,\\"longfought\\":1,\\"quest\\":1,\\"aggrieved\\":1,\\"investor\\":2,\\"sang\\":1,\\"cheol\\":1,\\"woo\\":3,\\"collect\\":2,\\"judgment\\":4,\\"against\\":1,\\"involving\\":1,\\"south\\":4,\\"business\\":3,\\"deal\\":1,\\"case\\":3,\\"could\\":2,\\"have\\":3,\\"furtherreaching\\":1,\\"implications\\":1,\\"douglas\\":1,\\"kellner\\":2,\\"manhattan\\":1,\\"lawyer\\":2,\\"who\\":2,\\"specializes\\":1,\\"recovering\\":1,\\"hidden\\":1,\\"worldwide\\":1,\\"if\\":2,\\"diverted\\":1,\\"funds\\":1,\\"when\\":1,\\"should\\":1,\\"been\\":3,\\"paying\\":1,\\"thats\\":1,\\"fraudulent\\":1,\\"transfer\\":1,\\"they\\":2,\\"sue\\":2,\\"get\\":2,\\"back\\":2,\\"theyd\\":1,\\"be\\":1,\\"entitled\\":1,\\"it\\":4,\\"can\\":1,\\"show\\":1,\\"was\\":6,\\"fraudulently\\":1,\\"transferred\\":1,\\"john\\":1,\\"han\\":1,\\"firm\\":2,\\"kobre\\":1,\\"kim\\":1,\\"which\\":5,\\"handling\\":1,\\"investors\\":1,\\"had\\":3,\\"plans\\":1,\\"unwittingly\\":1,\\"entangled\\":1,\\"dispute\\":1,\\"collection\\":1,\\"effort\\":1,\\"dates\\":1,\\"stock\\":2,\\"collapse\\":2,\\"littauer\\":2,\\"technologies\\":1,\\"ltd\\":1,\\"technology\\":1,\\"seoul\\":1,\\"high\\":2,\\"major\\":1,\\"fled\\":1,\\"korea\\":3,\\"amid\\":1,\\"claims\\":1,\\"price\\":1,\\"manipulation\\":1,\\"departing\\":1,\\"before\\":3,\\"authorities\\":2,\\"arrested\\":1,\\"partner\\":1,\\"later\\":3,\\"insiders\\":1,\\"profited\\":1,\\"selling\\":1,\\"their\\":1,\\"shares\\":1,\\"while\\":2,\\"minority\\":1,\\"shareholders\\":1,\\"including\\":1,\\"suffered\\":1,\\"enormous\\":1,\\"losses\\":1,\\"ordered\\":1,\\"pay\\":1,\\"million\\":2,\\"mushroomed\\":1,\\"because\\":5,\\"accumulating\\":1,\\"interest\\":1,\\"managing\\":1,\\"director\\":1,\\"richard\\":1,\\"lee\\":1,\\"related\\":1,\\"lawsuit\\":1,\\"pending\\":1,\\"kong\\":4,\\"filed\\":1,\\"appeared\\":1,\\"unaware\\":1,\\"until\\":2,\\"just\\":1,\\"overturned\\":1,\\"supreme\\":1,\\"all\\":1,\\"defendants\\":1,\\"except\\":1,\\"upheld\\":1,\\"him\\":1,\\"did\\":2,\\"appear\\":1,\\"defend\\":1,\\"himself\\":1,\\"acknowledging\\":1,\\"fined\\":1,\\"connection\\":1,\\"matter\\":1,\\"maintains\\":1,\\"commit\\":1,\\"offenses\\":1,\\"woos\\":1,\\"lawyers\\":1,\\"argue\\":1,\\"efforts\\":1,\\"hampered\\":1,\\"what\\":1,\\"papers\\":2,\\"called\\":1,\\"mazelike\\":1,\\"network\\":1,\\"offshore\\":1,\\"nominees\\":1,\\"trusts\\":1,\\"many\\":1,\\"are\\":1,\\"managed\\":1,\\"close\\":1,\\"family\\":1,\\"members\\":1,\\"classmates\\":1,\\"example\\":1,\\"estate\\":1,\\"where\\":1,\\"lives\\":1,\\"section\\":1,\\"forbes\\":1,\\"described\\":1,\\"wealthiest\\":1,\\"neighborhood\\":1,\\"earth\\":1,\\"owned\\":2,\\"through\\":1,\\"series\\":1,\\"shell\\":1,\\"companies\\":1,\\"turn\\":3,\\"british\\":1,\\"virgin\\":1,\\"islands\\":1,\\"say\\":1,\\"entered\\":1,\\"feb\\":1,\\"william\\":1,\\"g\\":1,\\"young\\":1,\\"district\\":1,\\"gives\\":1,\\"march\\":1,\\"over\\":2,\\"banking\\":1,\\"orders\\":1,\\"spackmans\\":2,\\"daughter\\":1,\\"claire\\":1,\\"sophomore\\":1,\\"testify\\":1,\\"records\\":1,\\"about\\":1,\\"her\\":1,\\"fathers\\":1,\\"american\\":1,\\"citizen\\":1,\\"permanent\\":1,\\"resident\\":1,\\"well\\":1,\\"partly\\":1,\\"son\\":1,\\"james\\":1,\\"adopted\\":1,\\"americans\\":1,\\"after\\":1,\\"biological\\":1,\\"parents\\":1,\\"died\\":1,\\"during\\":1,\\"war\\":1,\\"advanced\\":1,\\"world\\":1,\\"become\\":1,\\"chief\\":1,\\"prudentials\\":1,\\"insurance\\":1,\\"holdings\\":1,\\"younger\\":1,\\"include\\":1,\\"entertainment\\":1,\\"produced\\":1,\\"science\\":1,\\"fiction\\":1,\\"movie\\":1,\\"snowpiercer\\":1,\\"starring\\":1,\\"tilda\\":1,\\"swinton\\":1,\\"octavia\\":1,\\"spencer\\":1"'
为了从上面的字符串中获取 python 字典,我必须调用 json.loads(json.loads()) 。因为我想将整列转换为字典,所以我尝试了articles['word_count'].apply( lambda x: json.loads(json.loads(x)) )
,但这给了我一个错误:
TypeError: the JSON object must be str, bytes or bytearray, not 'float'
我该如何解决这个问题?或者当我从我的数据库导出到 CSV 时我错过了一个命令?或者当我在 Pandas 中调用 read_csv
时我错过了一个命令?
注意:我已尝试使用 read_csv
的“转换器”选项,但出现此错误:JSONDecodeError: Expecting value: line 1 column 1 (char 0)
我的功能是:
def dec(s):
return json.loads( json.loads(s) )
【问题讨论】:
TypeError
确实是一个相当奇怪的错误。您可以在创建新数据框时复制它吗:df = pandas.DataFrom.from_dict( 'word_count': 'the-string-here' )
并复制其上的操作?
如果我使用相同的字符串从头开始创建它,那么使用上面的 lambda 运行 apply()
就可以了,我得到的字典就像我期望的那样。
那不就说明它们不是 same 字符串吗?
这是可能的。我认为这与 Pandas 没有通过 apply() 传递字符串有关,而是与其他类型的对象有关。
我尝试制作一个DataFrame并使用articles.iloc[0]['word_count']
等作为值,它也工作得很好。
【参考方案1】:
使用pd.io.json.json_normalize()
将一整列 JSON 数据转换为具有相同行数的单独 DataFrame:
http://pandas.pydata.org/pandas-docs/version/0.19.0/generated/pandas.io.json.json_normalize.html
你的情况是这样的:
pd.io.json.json_normalize(articles.word_count)
如果 Pandas 不理解您输入数据中的转义,您可能必须对其进行预处理。
除此之外,由于您的数据来自数据库,因此您应该考虑直接加载它,而无需 CSV 中介。 Pandas 有这方面的功能,如read_sql_query()
和read_sql_table()
。
【讨论】:
谢谢!这很有帮助。我遇到的奇怪错误是我的 DateFrame 中的一些 NaN 值存在问题。在需要转换我的 json 时,这个 pd.io.json 方法可以节省大量时间。以上是关于从包含 JSON 的 CSV 文件创建 Pandas DataFrame的主要内容,如果未能解决你的问题,请参考以下文章
重复将多个 Panda 数据集导出到多个 csv 文件的任务
如何将SalesForce数据导入Python Panda数据帧