HDF5 min_itemsize 错误:ValueError: Trying to store a string with len [##] in [y] column but this colum
Posted
技术标签:
【中文标题】HDF5 min_itemsize 错误:ValueError: Trying to store a string with len [##] in [y] column but this column has a limit of [##]!【英文标题】:HDF5 min_itemsize error: ValueError: Trying to store a string with len [##] in [y] column but this column has a limit of [##]! 【发布时间】:2017-02-18 13:07:34 【问题描述】:使用pandas.HDFStore().append()
后出现以下错误
ValueError: Trying to store a string with len [150] in [values_block_0] column but this column has a limit of [127]!
Consider using min_itemsize to preset the sizes on these columns
我正在创建一个 pandas DataFrame 并将其附加到 HDF5 文件中,如下所示:
import pandas as pd
store = pd.HDFStore("test1.h5", mode='w')
hdf_key = "one_key"
columns = ["col1", "col2", ... ]
df = pd.Dataframe(...)
df.col1 = df.col1.astype(str)
df.col2 = df.col2astype(int)
df.col3 = df.col3astype(str)
....
store.append(hdf_key, df, data_column=columns, index=False)
我收到上述错误:“ValueError: Trying to store a string with len [150] in [values_block_0] column but this column has a limit of [127]!”
之后,我执行代码:
store.get_storer(hdf_key).table.description
哪个输出
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": StringCol(itemsize=127, shape=(5,), dflt=b'', pos=1),
"values_block_1": Int64Col(shape=(5,), dflt=0, pos=2),
"col1": StringCol(itemsize=20, shape=(), dflt=b'', pos=3),
"col2": StringCol(itemsize=39, shape=(), dflt=b'', pos=4)
values_block_0
和 values_block_1
是什么?
所以,在这个 *** Pandas pytable: how to specify min_itemsize of the elements of a MultiIndex 之后,我尝试了
store.append(hdf_key, df, data_column=columns, index=False, min_itemsize="values_block_0":250)
这不起作用——现在我得到这个错误:
ValueError: Trying to store a string with len [250] in [values_block_0] column but this column has a limit of [127]!
Consider using min_itemsize to preset the sizes on these columns
我做错了什么?
编辑:此代码从filename.py
产生错误ValueError: min_itemsize has the key [values_block_0] which is not an axis or data_column
import pandas as pd
store = pd.HDFStore("test1.h5", mode='w')
hdf_key = "one_key"
my_columns = ["col1", "col2", ... ]
df = pd.Dataframe(...)
df.col1 = df.col1.astype(str)
df.col2 = df.col2astype(int)
df.col3 = df.col3astype(str)
....
store.append(hdf_key, df, data_column=my_columns, index=False, min_itemsize="values_block_0":350)
这是完整的错误:
(python-3) -bash:1008 $ python filename.py
Traceback (most recent call last):
File "filename.py", line 50, in <module>
store.append(hdf_key, dicts_into_df, data_column=my_columns, index=False, min_itemsize='values_block_0':350)
File "/path/lib/python-3/lib/python3.5/site-packages/pandas/io/pytables.py", line 970, in append
**kwargs)
File "/path/lib/python-3/lib/python3.5/site-packages/pandas/io/pytables.py", line 1315, in _write_to_group
s.write(obj=value, append=append, complib=complib, **kwargs)
File "/path/lib/python-3/lib/python3.5/site-packages/pandas/io/pytables.py", line 4263, in write
obj=obj, data_columns=data_columns, **kwargs)
File "/path/lib/python-3/lib/python3.5/site-packages/pandas/io/pytables.py", line 3853, in write
**kwargs)
File "/path/lib/python-3/lib/python3.5/site-packages/pandas/io/pytables.py", line 3535, in create_axes
self.validate_min_itemsize(min_itemsize)
File "/path/lib/python-3/lib/python3.5/site-packages/pandas/io/pytables.py", line 3174, in validate_min_itemsize
"data_column" % k)
ValueError: min_itemsize has the key [values_block_0] which is not an axis or data_column
【问题讨论】:
【参考方案1】:更新:
您拼错了data_columns
参数:data_column
- 它应该是data_columns
。结果,您的 HDF 存储中没有任何索引列,并且添加了 HDF 存储values_block_X
:
In [70]: store = pd.HDFStore(r'D:\temp\.data\my_test.h5')
拼写错误的参数将被忽略:
In [71]: store.append('no_idx_wrong_dc', df, data_column=df.columns, index=False)
In [72]: store.get_storer('no_idx_wrong_dc').table
Out[72]:
/no_idx_wrong_dc/table (Table(10,)) ''
description :=
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
"values_block_1": Int64Col(shape=(1,), dflt=0, pos=2),
"values_block_2": StringCol(itemsize=30, shape=(1,), dflt=b'', pos=3)
byteorder := 'little'
chunkshape := (1213,)
与以下相同:
In [73]: store.append('no_idx_no_dc', df, index=False)
In [74]: store.get_storer('no_idx_no_dc').table
Out[74]:
/no_idx_no_dc/table (Table(10,)) ''
description :=
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
"values_block_1": Int64Col(shape=(1,), dflt=0, pos=2),
"values_block_2": StringCol(itemsize=30, shape=(1,), dflt=b'', pos=3)
byteorder := 'little'
chunkshape := (1213,)
让我们正确拼写:
In [75]: store.append('no_idx_dc', df, data_columns=df.columns, index=False)
In [76]: store.get_storer('no_idx_dc').table
Out[76]:
/no_idx_dc/table (Table(10,)) ''
description :=
"index": Int64Col(shape=(), dflt=0, pos=0),
"value": Float64Col(shape=(), dflt=0.0, pos=1),
"count": Int64Col(shape=(), dflt=0, pos=2),
"s": StringCol(itemsize=30, shape=(), dflt=b'', pos=3)
byteorder := 'little'
chunkshape := (1213,)
旧答案:
AFAIK 你可以有效地设置min_itemsize
参数在第一个只追加。
演示:
In [33]: df
Out[33]:
num s
0 11 aaaaaaaaaaaaaaaa
1 12 bbbbbbbbbbbbbb
2 13 ccccccccccccc
3 14 ddddddddddd
In [34]: store = pd.HDFStore(r'D:\temp\.data\my_test.h5')
In [35]: store.append('test_1', df, data_columns=True)
In [36]: store.get_storer('test_1').table.description
Out[36]:
"index": Int64Col(shape=(), dflt=0, pos=0),
"num": Int64Col(shape=(), dflt=0, pos=1),
"s": StringCol(itemsize=16, shape=(), dflt=b'', pos=2)
In [37]: df.loc[4] = [15, 'X'*200]
In [38]: df
Out[38]:
num s
0 11 aaaaaaaaaaaaaaaa
1 12 bbbbbbbbbbbbbb
2 13 ccccccccccccc
3 14 ddddddddddd
4 15 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX...
In [39]: store.append('test_1', df, data_columns=True)
...
skipped
...
ValueError: Trying to store a string with len [200] in [s] column but
this column has a limit of [16]!
Consider using min_itemsize to preset the sizes on these columns
现在使用min_itemsize
,但仍附加到现有的store
对象:
In [40]: store.append('test_1', df, data_columns=True, min_itemsize='s':250)
...
skipped
...
ValueError: Trying to store a string with len [250] in [s] column but
this column has a limit of [16]!
Consider using min_itemsize to preset the sizes on these columns
如果我们要在 store
中创建一个新对象,则以下工作:
In [41]: store.append('test_2', df, data_columns=True, min_itemsize='s':250)
检查列大小:
In [42]: store.get_storer('test_2').table.description
Out[42]:
"index": Int64Col(shape=(), dflt=0, pos=0),
"num": Int64Col(shape=(), dflt=0, pos=1),
"s": StringCol(itemsize=250, shape=(), dflt=b'', pos=2)
【讨论】:
谢谢。在迭代多个数据帧并追加时,我仍然有点困惑如何实现这个解决方案?for chunk in pd.csv_reader(): store.append(key, chunk, data_columns)
或 for i in range: df=pd.Dataframe(); store.append(key, chunk, data_columns)
喜欢这里的答案:***.com/questions/39925077/… 看来您运行脚本。如果有错误,请在新密钥上store.append
。
@ShanZhengYang,您要么需要知道values_block_0
列的最大长度,要么使用肯定能够保持最大值的值。长度,例如:min_itemsize="values_block_0":1000
这种方法的问题(即使用min_itemsize="values_block_0":1000
)是我得到这个错误:ValueError: min_itemsize has the key [values_block_0] which is not an axis or data_column
。只有在ValueError: Trying to store a string with len [200] in [values_block_0] column but this column has a limit of [16]!
引发第一个错误之后,values_block_0
才会被识别为列
我应该使用与value_block_0
不同的值吗?
@ShanZhengYang,你能发一个产生ValueError: min_itemsize has the key [values_block_0] which is not an axis or data_column
的代码吗?【参考方案2】:
我大约在将 Pandas 从 18.1 更新到 22.0 的同时开始收到此错误(尽管这可能无关)。
我通过手动读取数据帧来修复现有 HDF5 文件中的错误,然后为错误中提到的列写入一个具有更大 min_itemsize
的新 HDF5 文件:
filename_hdf5 = "C:\test.h5"
df = pd.read_hdf(filename_hdf5, 'table_name')
hdf = HDFStore(filename_hdf5)
hdf.put('table_name', df, format='table', data_columns=True, min_itemsize='ColumnNameMentionedInError': 10)
hdf.close()
然后我更新了现有代码以在创建密钥时设置min_itemsize
。
专家补充
发生错误是因为尝试将更多行附加到现有数据帧,其固定列宽对于新数据来说太窄。固定列宽最初是根据第一次写入数据帧时列中最长的字符串设置的。
我认为 pandas 应该透明地处理这个错误,而不是为所有未来的附加操作留下一个有效的定时炸弹。这个问题可能需要数周甚至数年才能浮出水面。
【讨论】:
以上是关于HDF5 min_itemsize 错误:ValueError: Trying to store a string with len [##] in [y] column but this colum的主要内容,如果未能解决你的问题,请参考以下文章
使用 hdf5 作为 caffe 输入,错误:HDF5Data 不转换数据
HDF5-DIAG:在 HDF5 (1.8.11) 中检测到错误