如何在类中嵌套多处理管理器字典
Posted
技术标签:
【中文标题】如何在类中嵌套多处理管理器字典【英文标题】:how to have nested multiprocessing manager dictionaries in a class 【发布时间】:2020-12-03 18:48:19 【问题描述】:我创建了一个简单的类来存储多处理值。 init 函数如下所示:
def __init__(self):
Manager = multiprocessing.Manager()
self.FMT = '%Y/%m/%d %H:%M:%S:%f'
self.lock = multiprocessing.Lock()
self.grabDays = Manager.dict()
self.changeAmt = 0
self.command = multiprocessing.Value(ctypes.c_wchar_p, 'start sequence')
self.get_best = multiprocessing.Value(ctypes.c_bool, False)
self.done = multiprocessing.Value(ctypes.c_bool, False)
self.status = multiprocessing.Value(ctypes.c_wchar_p, 'nothing')
self.discrepencies = Manager.dict()
self.making = Manager.dict()
这很好用,但是如果我将 Manager
设为 self.Manager
但两者仍等于 multiprocessing.Manager()
。尝试将类传递给该类不可腌制的其他函数时,我会得到一个错误。如果我要让 Manager 成为一个类变量,我也会得到一个错误。这适用于对一个字典的简单操作,但我的类中有使用嵌套字典的函数。
例如:
Manager = multiprocessing.Manager()
num = 1
keys = list(self.grabDays.keys())
if num not in keys:
self.grabDays[num] = Manager.dict()
这不会返回错误,但是,其他进程看不到它是嵌套的以及对它所做的一切。有没有办法拥有嵌套的管理器字典?
【问题讨论】:
【参考方案1】:我想出了这个解决方案,老实说,这不是很优雅,但它确实有效。这个嵌套字典示例将是 3 个子字典深度,并涉及一个时间变量。这样一来,就没有太多难以弄清楚的事情了。
第一步是不要将要创建的字典初始化为您创建的类中的管理器字典,而是初始化为管理器列表。这看起来像这样:
def __init__(self):
self.manager = multiprocessing.Manager()
self.grabDays = self.manager.list()
显然,您可以随意命名。接下来,我创建了一个函数来将此列表初始化为特定的字符串,这些字符串将告诉我的程序变量是什么。另外,请注意,我说的是 3 层字典,但字符串中没有第三层。这是因为第三层将是由字典创建函数初始化的字典中的计数器。字符串中 ** 的原因是因为我知道在我要插入的任何变量中都不会连续出现 2 个星号。你显然可以选择任何你想要的分隔符,但重要的是你有一个,否则这将不起作用。
这是我添加值的函数:
def addGrabDaysClass(self,time, price, slope, volume, percentage, day, hour):
self.day = day
self.hour = hour
try: time = time.strftime('%Y/%m/%d %H:%M:%S:%f')
except: pass
self.grabDays.append(str(day)+'**'+str(hour)+'**'+str(slope)+'**'+str(price)+'**'+str(volume)+'**'+str(percentage)+'**'+str(time))
我还希望最多可以收集 15 天的数据,我也创建了一个工作函数来做到这一点,发布在下面:
import calendar
def updateGrabbedDaysDict(self):
#self.keys = self.grabDays.keys()
#del self.grabDays[self.keys[-1]]
storeToRemove = []
lister = list(self.get(name='grabDays', model='Array'))
list2 = lister[-1].split('**')
day = float(list2[0])
time = datetime.strptime(list2[6], '%Y/%m/%d %H:%M:%S:%f')
lastYear = time.year
lastMonth = time.month -1
if lastMonth < 0:
lastMonth = 12
lastYear - 1
daysPreviousMonth = calendar.monthrange(lastYear,lastMonth)[1]
dayLookFor = day-15
if dayLookFor < 0:
dayLookFor = daysPreviousMonth + dayLookFor
for i in range(len(lister)):
list2 = lister[i].split('**')
day = float(list2[0])
if dayLookFor == day:
storeToRemove.append(list2[i])
for i in range(len(storeToRemove)):
while storeToRemove[i] in self.grabDays:
self.grabDays.remove(storeToRemove[i])
这是我创建的函数,可以调用它来向经理列表添加信息,并确保它已更新:
from datetime import datetime
def addGrabDays(time, price, slope, volume, percentage, arg = None):
arg.addGrabDaysClass(time, price, slope, volume, percentage, time.day, time.hour)
arg.updateGrabbedDaysDict()
最后,这是您将它返回到工作字典中的方式:
def returnData(name, arg=None):
if name == 'grabDays':
lister = list(arg.get(name='grabDays', model='Array'))
dictionary =
#self.grabDays.append(str(day)+'**'+str(hour)+'**'+str(slope)+'**'+str(price)+'**'+str(volume)+'**'+str(percentage)+'**'+str(time))
for i in range(len(lister)):
list2 = lister[i].split('**')
day = float(list2[0])
hour = float(list2[1])
slope = float(list2[2])
price = float(list2[3])
volume = float(list2[4])
percentage = float(list2[5])
time = datetime.strptime(list2[6], '%Y/%m/%d %H:%M:%S:%f')
keys = list(dictionary.keys())
if day not in keys:
dictionary[day] =
keys = list(dictionary[day].keys())
if hour not in keys:
dictionary[day][hour] =
keys = list(dictionary[day][hour].keys())
if not keys:
counter = 0
else:
counter = keys[-1]+1
dictionary[day][hour][counter] = 'slope':slope, 'price':price, 'volume':volume, 'time':time, 'percentage':percentage
return dictionary
请注意,我从输入字符串的部分复制了 cmets,这样我就不必每次都上下滚动。将该代码放入我称为 storeData 的 python 文件中后,我能够创建一个测试器示例。如果您仍在阅读并且对基础知识感兴趣,但为了证明代码有效,这里是一个示例:
代码:
from storeData import *
import multiprocessing
import time
from datetime import datetime
def try2(arg):
now = datetime.now()
for i in range(0,35):
addGrabDays(time=now, price=(i*9), slope=(i*5), volume=(i*3), percentage=(i*8), arg = arg)
time.sleep(1)
print('going to print in next process')
time.sleep(2)
print('done!')
def nextTry(arg):
time.sleep(2)
print(returnData('grabDays', arg=arg))
def foregrounder():
ult = data()
p1 = Process(target = try2, args=(ult,))
p1.start()
p2 = Process(target = nextTry, args=(ult,))
p2.start()
p1.join()
p2.join()
if __name__ == "__main__":
foregrounder()
代码结果:
going to print in next process
14.0: 16.0: 0: 'slope': 0.0, 'price': 0.0, 'volume': 0.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 0.0, 1: 'slope': 5.0, 'price': 9.0, 'volume': 3.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 8.0, 2: 'slope': 10.0, 'price': 18.0, 'volume': 6.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 16.0, 3: 'slope': 15.0, 'price': 27.0, 'volume': 9.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 24.0, 4: 'slope': 20.0, 'price': 36.0, 'volume': 12.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 32.0, 5: 'slope': 25.0, 'price': 45.0, 'volume': 15.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 40.0, 6: 'slope': 30.0, 'price': 54.0, 'volume': 18.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 48.0, 7: 'slope': 35.0, 'price': 63.0, 'volume': 21.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 56.0, 8: 'slope': 40.0, 'price': 72.0, 'volume': 24.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 64.0, 9: 'slope': 45.0, 'price': 81.0, 'volume': 27.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 72.0, 10: 'slope': 50.0, 'price': 90.0, 'volume': 30.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 80.0, 11: 'slope': 55.0, 'price': 99.0, 'volume': 33.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 88.0, 12: 'slope': 60.0, 'price': 108.0, 'volume': 36.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 96.0, 13: 'slope': 65.0, 'price': 117.0, 'volume': 39.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 104.0, 14: 'slope': 70.0, 'price': 126.0, 'volume': 42.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 112.0, 15: 'slope': 75.0, 'price': 135.0, 'volume': 45.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 120.0, 16: 'slope': 80.0, 'price': 144.0, 'volume': 48.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 128.0, 17: 'slope': 85.0, 'price': 153.0, 'volume': 51.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 136.0, 18: 'slope': 90.0, 'price': 162.0, 'volume': 54.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 144.0, 19: 'slope': 95.0, 'price': 171.0, 'volume': 57.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 152.0, 20: 'slope': 100.0, 'price': 180.0, 'volume': 60.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 160.0, 21: 'slope': 105.0, 'price': 189.0, 'volume': 63.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 168.0, 22: 'slope': 110.0, 'price': 198.0, 'volume': 66.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 176.0, 23: 'slope': 115.0, 'price': 207.0, 'volume': 69.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 184.0, 24: 'slope': 120.0, 'price': 216.0, 'volume': 72.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 192.0, 25: 'slope': 125.0, 'price': 225.0, 'volume': 75.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 200.0, 26: 'slope': 130.0, 'price': 234.0, 'volume': 78.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 208.0, 27: 'slope': 135.0, 'price': 243.0, 'volume': 81.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 216.0, 28: 'slope': 140.0, 'price': 252.0, 'volume': 84.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 224.0, 29: 'slope': 145.0, 'price': 261.0, 'volume': 87.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 232.0, 30: 'slope': 150.0, 'price': 270.0, 'volume': 90.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 240.0, 31: 'slope': 155.0, 'price': 279.0, 'volume': 93.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 248.0, 32: 'slope': 160.0, 'price': 288.0, 'volume': 96.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 256.0, 33: 'slope': 165.0, 'price': 297.0, 'volume': 99.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 264.0, 34: 'slope': 170.0, 'price': 306.0, 'volume': 102.0, 'time': datetime.datetime(2020, 8, 14, 16, 8, 14, 383679), 'percentage': 272.0
done!
如果您仔细观察,您会发现创建了 35 个实例(包括零)并且它有 3 层。虽然,因为它们都是在同一时间制作的,所以您必须相信我,在不同时间和日期的多个图层仍然可以像上面演示的计数器一样工作。
【讨论】:
以上是关于如何在类中嵌套多处理管理器字典的主要内容,如果未能解决你的问题,请参考以下文章