如何在 Python 中通过 apply_async() 传递 gurobipy.Model 变量?
Posted
技术标签:
【中文标题】如何在 Python 中通过 apply_async() 传递 gurobipy.Model 变量?【英文标题】:How to pass gurobipy.Model variables through apply_async() in Python? 【发布时间】:2021-01-11 11:41:12 【问题描述】:总结 我是 python 并行计算的新手。我使用 Gurobi 建立了一个 DEA 模型并计算了每个 DMU(决策单元)的效率。为了减少总的计算时间,我将模型分为两步求解:
Step1,定义k个模型 Step2,并行优化 k 个模型。Step1 正确且可执行。但是在第二步中,当我通过multiprocessing.Pool.apply_async()
将对象参数“gurobipy.Model”传递给我定义的函数Solve()
时,出现了TypeError: can't pickle PyCapsule objects
。并且函数Solve()
没有被执行。如何使用apply_async
函数传递gurobipy.Model
变量,或者有没有其他并行的方法传递gurobipy.Model
变量?
详情 以下是主程序
from multiprocessing import Pool
import multiprocessing
from gurobipy import *
import gurobipy as gp
import numpy as np
import pandas as pd
import time
def runComputationgurobi(Root, FileName, ResultFileName, numInput, numOutput):
'''
input:root path, file name, number of input unit, number of output unit
output:Excel file (including DMU number, best solution(efficiency), modeling time, solving time)
'''
#Data peprocessing
df = pd.read_csv(f"Root/FileName", header=None) #download data
D = np.array(df) #convert to ndarray
transD = D.transpose() #transpose ndarray
outputs = [] #empty list to store best solutions
scale, S = transD.shape #scale : numInput+numOutput;S : total number of DMUs
print("Build k models...")
#Step1: Modeling
'''
call BuildGurobiModel(list of download data, number of input unit,number of output unit)
return:k modeling times(list[float])、k Gurobi models(list[gurobipy.Model])
'''
build_time_house, model_house = BuildGurobiModels(transD, numInput, numOutput)
print("Parallel computing k models...")
#Step2: Parallel optimization model
'''
call Solve(kth Gurobi model)
return:k best solutions(efficiency)(float)、k solving times(float)
'''
temp = []
pool = multiprocessing.Pool(4)
print("Start parallel solve")
start_time = time.time()
for k in range(S):
temp.append([k+1, build_time_house[k], pool.apply_async(Solve, args=(model_house[k], ))])
pool.close()
pool.join()
print(f"time.time() - start_times")
for k, build_time, _return in temp:
outputs.append([k, _return.get()[0], build_time, _return.get()[1]]) #_return.get()=(obj_efficiency, solve_time, )
#Output Excel
pd.DataFrame(np.array(outputs)).to_excel(f"Root/result_parallel_matrix_ChgRHS.xlsx", header=["DMU", "obj_efficiency", "build_time", "solve_time"], index=False)
if __name__=="__main__":
rootPath = "C:/Users/MB516/Documents/source/Python Scripts/Parallel_processing"
file_name = "test.csv"
resultfile_name = "result.csv"
numInput = 2
numOutput = 3
start_time = time.time()
runComputationgurobi(rootPath, file_name, resultfile_name, numInput, numOutput)
parallel_solveTime = time.time() - start_time
print(f"solveTime:parallel_solveTime")
构建 k 个模型:
def BuildGurobiModels(transD, numInput, numOutput):
'''
input: list of download data(list), number of input unit(int),number of output unit(int)
return: k modeling times(list[float]), k Gurobi models(list[gurobipy.Model])
'''
#Data peprocessing
model_house = []
build_time_house = []
scale, S = transD.shape #scale : numInput+numOutput;S : total number of DMUs
for k in range(S):
#Define model
start_time = time.time()
model = gp.Model(f"NaiveDEAk+1")
model.setParam("OutputFlag", 0) # 0: disables solver output
model.setParam("Method", 0) # 0: primal simplex
#Define variables
#define lambda
lambdaarray = model.addVars(S, lb = 0.0, ub = GRB.INFINITY, vtype = GRB.CONTINUOUS)
#define theta
theta = model.addVar(lb = -GRB.INFINITY, ub = GRB.INFINITY, vtype=GRB.CONTINUOUS, name="theta")
model.update()
#Set the objective
model.setObjective(theta, GRB.MINIMIZE)
#Define constraints
#input constraint
model.addConstrs((LinExpr(transD[i], lambdaarray.values()) <=transD[i, k]*theta for i in range(numInput)), name = "Input")
model.update()
#output constraint
model.addConstrs((LinExpr(transD[j], lambdaarray.values()) >=transD[j, k] for j in range(numInput, scale)), name = "Output")
model.update()
#convexity constraint
model.addConstr(quicksum(lambdaarray)==1, name="Convexity")
model.update()
build_time = time.time() - start_time #modeling time
model_house.append([model])
build_time_house.append([build_time])
return build_time_house, model_house
求解第 k 个模型:
def Solve(model):
'''
input: kth Gurobi model(gurobipy.Model)
return:k best solutions(efficiency)(float), k solving times(float)
'''
print("Start Solve!!!!!!")
#Solve
start_time = time.time()
model.optimize()
solve_time = time.time() - start_time
#print
objvalue = model.getObjective()
getobjv = objvalue.getValue()
当我运行代码时,结果如下所示。
Build k models...
Parallel computing k models...
0.53267502784729s
Traceback (most recent call last):
File "c:/Users/MB516/Documents/source/Python Scripts/Parallel_processing/ENGLIFH_TEST_PARALLEL.py", line 124, in <module>
runComputationgurobi(rootPath, file_name, resultfile_name, numInput, numOutput)
File "c:/Users/MB516/Documents/source/Python Scripts/Parallel_processing/ENGLIFH_TEST_PARALLEL.py", line 47, in runComputationgurobi
outputs.append([k, _return.get()[0], build_time, _return.get()[1]]) #_return.get()=(obj_efficiency, solve_time, )
TypeError: can't pickle PyCapsule objects
它没有执行步骤 2 的 Solve 函数,因为它没有打印出“Start Solve!!!!!!”在函数Solve()
中。以及下面的程序
for k, build_time, _return in temp:
outputs.append([k, _return.get()[0], build_time, _return.get()[1]]) #_return.get()=(obj_efficiency, solve_time, )
有TypeError: can't pickle PyCapsule objects
。我怎么解决这个问题 ?提前感谢您的回答!
环境
操作系统:Windows 10(64 位) 编译器:Visual Studio Code 1.49.1 Python:3.6.10 Gurobi(求解器):9.0.3【问题讨论】:
请尝试缩小问题范围。似乎涉及多种工具,目前尚不清楚错误源自何处。 嗨,@mattmilten,我试图缩小摘要中的问题范围。问题是“如何使用apply_async
传递gurobipy.Model
对象”或“哪种并行操作方法可以输入gurobipy.Model
对象”。另外,我猜测TypeError: can't pickle PyCapsule objects
出现是因为我自己定义的函数Solve()
没有执行。
【参考方案1】:
这是您可以在 Python 中并行创建和求解多个模型的方法:
import multiprocessing as mp
import gurobipy as gp
def solve_model(input_data):
with gp.Env() as env, gp.Model(env=env) as model:
# define model
model.optimize()
# retrieve data from model
if __name__ == '__main__':
with mp.Pool() as pool:
pool.map(solve_model, [input_data1, input_data2, input_data3]
更多信息请参考full guide。
【讨论】:
感谢您的回答。我会试试这个方法。另外,这样可以只建一次模型,多次通过吗?根据我的DEA模型,我想要的是“只构建一次模型”,然后只需要修改模型的某个约束的RHS,并做k次(k为正整数)。 不,您需要创建模型的多个副本。一个完全不同的方法可能是multi-scenario optimization。 你好,@mattmilten,经过练习,我又回到了原来的问题。让我用link的例子来说明。在示例中,当定义了基本模型时,如何并行修改每个场景(示例没有并行修改每个场景)?要并行修改它们,我必须使用pool.apply_async
等函数并传递gurobipy.Model
变量。但这又回到了“pool.apply_async 不支持传递 gurobipy.Model 变量”的问题。
并行运算函数是否支持gurobipy.Model
变量的传递?
多场景解决方案(就像正常的优化一样)在内部使用并行化,因此您应该检查是否甚至可以使用(手动)外部并行化来击败它。以上是关于如何在 Python 中通过 apply_async() 传递 gurobipy.Model 变量?的主要内容,如果未能解决你的问题,请参考以下文章
在 Python 中通过 ElementTree 解析 xml 时如何保留命名空间
如何在 Python Paramiko 中通过 HTTP 代理 ssh?