使用 numba 时引发异常
Posted
技术标签:
【中文标题】使用 numba 时引发异常【英文标题】:Raising an exception while using numba 【发布时间】:2014-11-07 10:02:27 【问题描述】:从here 跟进,我不断收到溢出。所以我试图提出一个例外,以便我确切地知道哪里出了问题。
我有这样的东西:
@jit
def train_function(X, y, H):
np.seterr(over="raise", under="raise", invalid="raise")
# do some stuff, start a double loop, and then do:
try:
z[i,j] = math.exp(-beta[j,i])
except OverflowError:
print "Calculation failed! z[i,j] = math.exp(-beta[j,i]), j: " + str(j) + ", i: " +str(i) + ", b: " + str(beta[j,i]) + ", omb: " + str(oneminusbeta[j,i])
raise
class MyClass(object):
# init and other methods
def train(self, X, y, H):
train_function(X, y, H)
但我收到此错误:
Traceback (most recent call last):
File "C:\work_asaaki\code\gbc_classifier_train_7.py", line 55, in <module>
gentlebooster.train(X_train, y_train, boosting_rounds)
File "C:\work_asaaki\code\gentleboost_c_class_jit_v7_nolimit.py", line 297, in train
self.g_per_round, self.g = train_function(X, y, H)
File "C:\Anaconda\lib\site-packages\numba\dispatcher.py", line 152, in _compile_for_args
return self.jit(sig)
File "C:\Anaconda\lib\site-packages\numba\dispatcher.py", line 143, in jit
return self.compile(sig, **kws)
File "C:\Anaconda\lib\site-packages\numba\dispatcher.py", line 131, in compile
flags=flags, locals=locs)
File "C:\Anaconda\lib\site-packages\numba\compiler.py", line 103, in compile_extra
bc = bytecode.ByteCode(func=func)
File "C:\Anaconda\lib\site-packages\numba\bytecode.py", line 305, in __init__
table = utils.SortedMap(ByteCodeIter(code))
File "C:\Anaconda\lib\site-packages\numba\utils.py", line 70, in __init__
for i, (k, v) in enumerate(sorted(seq)):
File "C:\Anaconda\lib\site-packages\numba\bytecode.py", line 219, in next
raise NotImplementedError(ts % tv)
NotImplementedError: offset=742 opcode=0x79 opname=SETUP_EXCEPT
我不能在吗?我在 64 位机器上使用 Anaconda 2.0.1 和 Numba 0.13.x 和 Numpy 1.8.x。
【问题讨论】:
实际上看起来try..except
块不受numba
s 字节码编译器的支持。您从here 获得NotImplementedError
,因为SETUP_EXCEPT
不在table of supported opcodes 中。
我收到了 numba 人的回复 - 他们设置 try-except 块无法在 numba 中实现。
@user961627,请将您从 numba 人那里得到的回复作为答案发布在下面,以帮助未来疲惫的旅行者 :)
【参考方案1】:
http://numba.pydata.org/numba-doc/dev/reference/pysupported.html
2.6.1.1。构造
Numba 力求支持尽可能多的 Python 语言,但某些语言功能在 Numba 编译的函数中不可用。目前不支持以下 Python 语言功能:
Class definition
Exception handling (try .. except, try .. finally)
Context management (the with statement)
raise 语句支持多种形式:
raise (to re-raise the current exception)
raise SomeException
raise SomeException(<arguments>)
所以我们就到这里了:
z[i,j] = math.exp(-beta[j,i])
大约 exp(-1000) 下的任何负数;非常非常小的将评估为零而不会溢出
math.exp(-1000000000)
"works" 并且可能不是你的问题(虽然它会返回 0.0,但它不是“真正的”零)
那么什么会导致这个失败呢?我们知道:
print(math.exp(100))
>>>
2.6881171418161356e+43
傻大了,远不止这些……可能溢出
果然
print(math.exp(1000))
>>>
OverflowError: math range error
我没有引用,但我认为有效范围是 -700 到 700,从双浮点数的角度来看,有效地评估为 0 和无穷大(溢出)
处理我们窗口函数:
n = beta
if n > 100:
n = 100
z = math.exp(n)
但这也行不通,因为 math.exp(n) 只接受浮点数,而您的 beta 似乎是一个列表;你必须使用 numpy.exp(n) 和 numpy.clip() 来窗口
b = numpy.array(-beta[j,i])
n = numpy.clip(b, a_max=100)
z = numpy.exp(n)
或引发溢出异常:
b = numpy.array(-beta[j,i])
n = numpy.clip(b, a_max=100)
if b != n:
print (j,i,-beta[j,i])
raise OverflowError
else:
z = numpy.exp(n)
【讨论】:
以上是关于使用 numba 时引发异常的主要内容,如果未能解决你的问题,请参考以下文章