keras:如何编写自定义的损失函数来聚合帧级预测到歌曲级预测
Posted
技术标签:
【中文标题】keras:如何编写自定义的损失函数来聚合帧级预测到歌曲级预测【英文标题】:keras: how to write customized loss function to aggregate over frame-level predictions to song-level prediction 【发布时间】:2019-03-21 01:29:03 【问题描述】:我正在做歌曲流派分类(2 类)。对于每首歌曲,我将它们切成小帧 (5s) 以生成 MFCC 作为神经网络的输入特征,并且每一帧都有一个相关的歌曲流派标签。
数据如下所示:
name label feature
....
song_i_frame1 label feature_vector_frame1
song_i_frame2 label feature_vector_frame2
...
song_i_framek label feature_vector_framek
...
我知道我可以随机选择 80% 的歌曲(它们的小帧)作为训练数据,其余的作为测试数据。但是现在我写 X_train 的方式是帧级别的帧,而 biney 交叉熵损失函数是在帧级别定义的。我想知道如何自定义损失函数,使其在帧级预测的聚合(例如歌曲的每一帧预测的多数票)上最小化。
目前,我拥有的是:
model_19mfcc = Model(input_shape = (X_train19.shape[1], X_train19.shape[2]))
model_19mfcc.compile(loss='binary_crossentropy', optimizer="RMSProp", metrics=["accuracy"])
history_fit = model_19mfcc.fit(X_train19, y_train,validation_split=0.25, batch_size = 1800/50, epochs= 200)
此外,当我将训练和测试数据输入 keras 时,数据的相应 ID(名称)会丢失,将数据(名称、等级和特征)保存在单独的 pandas 数据框中并匹配预测来自keras的一个好习惯?还是有其他好的选择?
提前致谢!
【问题讨论】:
【参考方案1】:类型分类通常不需要自定义损失函数。 可以使用Multiple Instance Learning (MIL) 设置将歌曲拆分为多个预测窗口的组合模型。
MIL 是一种监督学习方法,其中标签不是在每个独立样本(实例)上,而是在实例的“袋子”(无序集)上。 在您的情况下,实例是每 5 秒的 MFCC 功能窗口,而包就是整首歌曲。
在 Keras 中,我们使用TimeDistributed
层为所有窗口执行我们的模型。
然后我们使用GlobalAveragePooling1D
组合结果,有效地
跨窗口实施平均投票。这比多数投票更容易区分。
下面是一个可运行的例子:
import math
import keras
import librosa
import pandas
import numpy
import sklearn
def window_model(n_bands, n_frames, n_classes, hidden=32):
from keras.layers import Input, Dense, Flatten, Conv2D, MaxPooling2D
out_units = 1 if n_classes == 2 else n_classes
out_activation = 'sigmoid' if n_classes == 2 else 'softmax'
shape = (n_bands, n_frames, 1)
# Basic CNN model
# An MLP could also be used, but may need to reshape on input and output
model = keras.Sequential([
Conv2D(16, (3,3), input_shape=shape),
MaxPooling2D((2,3)),
Conv2D(16, (3,3)),
MaxPooling2D((2,2)),
Flatten(),
Dense(hidden, activation='relu'),
Dense(hidden, activation='relu'),
Dense(out_units, activation=out_activation),
])
return model
def song_model(n_bands, n_frames, n_windows, n_classes=3):
from keras.layers import Input, TimeDistributed, GlobalAveragePooling1D
# Create the frame-wise model, will be reused across all frames
base = window_model(n_bands, n_frames, n_classes)
# GlobalAveragePooling1D expects a 'channel' dimension at end
shape = (n_windows, n_bands, n_frames, 1)
print('Frame model')
base.summary()
model = keras.Sequential([
TimeDistributed(base, input_shape=shape),
GlobalAveragePooling1D(),
])
print('Song model')
model.summary()
model.compile(loss='categorical_crossentropy', optimizer='SGD', metrics=['acc'])
return model
def extract_features(path, sample_rate, n_bands, hop_length, n_frames, window_length, song_length):
# melspectrogram might perform better with CNNs
from librosa.feature import mfcc
# Load a fixed length section of sound
# Might need to pad if some songs are too short
y, sr = librosa.load(path, sr=sample_rate, offset=0, duration=song_length)
assert sr == sample_rate, sr
_song_length = len(y)/sample_rate
assert _song_length == song_length, _song_length
# Split into windows
window_samples = int(sample_rate * window_length)
window_hop = window_samples//2 # use 50% overlap
windows = librosa.util.frame(y, frame_length=window_samples, hop_length=window_hop)
# Calculate features for each window
features = []
for w in range(windows.shape[1]):
win = windows[:, w]
f = mfcc(y=win, sr=sample_rate, n_mfcc=n_bands,
hop_length=hop_length, n_fft=2*hop_length)
f = numpy.expand_dims(f, -1) # add channels dimension
features.append(f)
features = numpy.stack(features)
return features
def main():
# Settings for our model
n_bands = 13 # MFCCs
sample_rate = 22050
hop_length = 512
window_length = 5.0
song_length_max = 1.0*60
n_frames = math.ceil(window_length / (hop_length/sample_rate))
n_windows = math.floor(song_length_max / (window_length/2))-1
model = song_model(n_bands, n_frames, n_windows)
# Generate some example data
ex = librosa.util.example_audio_file()
examples = 8
numpy.random.seed(2)
songs = pandas.DataFrame(
'path': [ex] * examples,
'genre': numpy.random.choice([ 'rock', 'metal', 'blues' ], size=examples),
)
assert len(songs.genre.unique() == 3)
print('Song data')
print(songs)
def get_features(path):
f = extract_features(path, sample_rate, n_bands,
hop_length, n_frames, window_length, song_length_max)
return f
from sklearn.preprocessing import LabelBinarizer
binarizer = LabelBinarizer()
y = binarizer.fit_transform(songs.genre.values)
print('y', y.shape, y)
features = numpy.stack([ get_features(p) for p in songs.path ])
print('features', features.shape)
model.fit(features, y)
if __name__ == '__main__':
main()
示例输出内部和组合模型摘要:
Frame model
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 11, 214, 16) 160
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 5, 71, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 3, 69, 16) 2320
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 1, 34, 16) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 544) 0
_________________________________________________________________
dense_1 (Dense) (None, 32) 17440
_________________________________________________________________
dense_2 (Dense) (None, 32) 1056
_________________________________________________________________
dense_3 (Dense) (None, 3) 99
=================================================================
Total params: 21,075
Trainable params: 21,075
Non-trainable params: 0
_________________________________________________________________
Song model
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
time_distributed_1 (TimeDist (None, 23, 3) 21075
_________________________________________________________________
global_average_pooling1d_1 ( (None, 3) 0
=================================================================
Total params: 21,075
Trainable params: 21,075
Non-trainable params: 0
_________________________________________________________________
以及输入模型的特征向量的形状:
features (8, 23, 13, 216, 1)
8 首歌曲,每首 23 个窗口,13 个 MFCC 频段,每个窗口 216 帧。 还有一个大小为 1 的第五维度,让 Keras 开心……
【讨论】:
谢谢!我只是想知道,在我只有大约 150 首歌曲进行分类的情况下,我应该使用一些预训练模型(如果是的话,对预训练模型有什么建议),因为这个数据集的大小在聚合到歌曲级别? 如果你能找到一个在某些音乐分类任务上预训练的模型,这将是对其进行微调的理想选择。但是没有那么多预训练的音乐网。 您可以使用数据增强来人为地增加数据集的大小。使用许多不同的时移可以有很大帮助,音高变换和时间拉伸(少量)也可以。以上是关于keras:如何编写自定义的损失函数来聚合帧级预测到歌曲级预测的主要内容,如果未能解决你的问题,请参考以下文章