为啥 sql 可以垂直扩展而 nosql 可以水平扩展

Posted

技术标签:

【中文标题】为啥 sql 可以垂直扩展而 nosql 可以水平扩展【英文标题】:why is sql vertically scalable and nosql horizontally为什么 sql 可以垂直扩展而 nosql 可以水平扩展 【发布时间】:2016-01-16 04:17:07 【问题描述】:

我是 NoSQL 的新手,并试图理解它的含义。

我在许多不同的网站上看到很多文章都重复了这样一个事实:“SQL 数据库是垂直扩展的(通过添加 CPU/内存),而 NoSQL 数据库是水平扩展的(通过添加更多可以执行分布式计算的机器)”。

例如这些文章:http://dataconomy.com/sql-vs-nosql-need-know/http://www.thegeekstuff.com/2014/01/sql-vs-nosql-db/

问题是我不明白为什么。

据我所知,SQL 和 NoSQL 之间的主要区别(除了可伸缩性问题)是 SQL 存储在表中,而 NoSQL 以不同的方式存储(Key-Value/Graph/xml 等)。 )。

我似乎无法理解这两个事实(可扩展性和存储策略)之间的联系。这些对我来说似乎无关紧要(可能是由于缺乏理解)。

【问题讨论】:

现代 SQL 数据库和 NoSQL 数据库都可以利用多个处理器和多个磁盘。两者通常也可以利用更多内存。两者都有,在现有配置中添加新硬件时可能会出现问题,但这取决于数据库。概括地说,这些文章具有误导性,或者您的解释不完整。 感谢您的回答。我添加了文章。也许你可以看看这些确实是误导性的文章还是我的解释不好。 【参考方案1】:

文章一般是合理的。 NoSQL 技术和 SQL 技术(没有更好的术语)如今都发挥着重要作用——正如两篇文章所指出的那样。讨论有点让人想起分层数据库与关系数据库,从前。

我不同意可扩展性差异。讨论忽略了 Hive、PrestoDB 和 BigQuery 等技术,这些技术本着传统 RDBMS 的精神基于高度可扩展的技术。

RDBMS 和 NoSQL 之间的主要区别(在我看来)是 ACID 合规性和数据结构。第一个是关系数据库携带的“负担”,无论好坏——对于金融交易来说绝对是方便的,但会以其他目的的开销为代价。第二个领域是传统数据库正在朝着更好地处理非结构化数据的方向发展,直接支持嵌套表、JSON 和 XML 格式。然而,结构很重要,因为大量数据科学家在与数据交互时可能会通过艰难的方式学习。

大型可扩展键值数据库在设计时考虑了“水平”可扩展性。再加上缺乏纯 ACID 属性,有助于为新硬件重新平衡数据——假设您已经正确设计了数据库(这可能是一个很大的假设)。

Oracle、DB2 和 Teradata 等数据库几十年来一直支持并行处理(尽管更偏向于单一服务器,尽管采用无共享架构)。他们的技术早于更现代的基于 Apache 的系统(因为没有更好的术语),但这并不意味着他们不能跨多个处理器扩展。

Hive、Redshift、BigQuery 和 PrestoDB 等新数据库在更现代的“水平”可扩展意义上提供基于 SQL 的接口(至少对于查询而言)。 Postgres 世界正在进行大量工作来支持并行处理——Greenplum、Netezza、Vertica 等数据库的例子证明了关系数据库不能跨多个独立处理器扩展的想法。

【讨论】:

以上是关于为啥 sql 可以垂直扩展而 nosql 可以水平扩展的主要内容,如果未能解决你的问题,请参考以下文章

为啥我的相机预览显示水平而不是垂直?

为啥谷歌地图纬度是垂直的而不是水平的?

NoSQL是什么?

为啥 NoSQL 比 RDBMS 更擅长“横向扩展”?

python Nosql-redis 连接管道

如何在sql中垂直而不是水平显示字段