将 HTML 转换为 CSV
Posted
技术标签:
【中文标题】将 HTML 转换为 CSV【英文标题】:Convert HTML into CSV 【发布时间】:2016-12-19 11:13:14 【问题描述】:我想将从下面的脚本中获得的 html 表格转换为 CSV 文件,但出现如下类型错误:
TypeError:序列项 0:预期字符串,找到标记
from bs4 import BeautifulSoup
import urllib2
url = 'http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_s3_en.php?block_no=47401&view=1'
html = urllib2.urlopen(url).read()
soup = BeautifulSoup(html)
table = soup.find_all('table', class_='data2_s')
rows = table[0].find_all('tr')
如何将其转换为 CSV 文件最简单的方法是什么? 我试过:
fo = open('fo.txt','w')
for r in rows:
fo.write(str(r.txt) + '\n')
fo.close()
但它写的是“无”
HTML 是这样的:
<table class="data2_s"><caption class="m">WAKKANAI   WMO Station ID:47401 Lat 45<sup>o</sup>24.9'N  Lon 141<sup>o</sup>40.7'E</caption><tr><th scope="col">Year</th><th scope="col">Jan</th><th scope="col">Feb</th><th scope="col">Mar</th><th scope="col">Apr</th><th scope="col">May</th><th scope="col">Jun</th><th scope="col">Jul</th><th scope="col">Aug</th><th scope="col">Sep</th><th scope="col">Oct</th><th scope="col">Nov</th><th scope="col">Dec</th><th scope="col">Annual</th></tr><tr class="mtx" style="text-align:right;"><td style="text-align:center">1938</td><td class="data_0_0_0_0">-5.2</td><td class="data_0_0_0_0">-4.9</td><td class="data_0_0_0_0">-0.6</td><td class="data_0_0_0_0">4.7</td><td class="data_0_0_0_0">9.5</td><td class="data_0_0_0_0">11.6</td><td class="data_0_0_0_0">17.9</td><td class="data_0_0_0_0">22.2</td><td class="data_0_0_0_0">16.5</td><td class="data_0_0_0_0">10.7</td><td class="data_0_0_0_0">3.3</td><td class="data_0_0_0_0">-4.7</td><td class="data_0_0_0_0">6.8</td></tr>
<tr class="mtx" style="text-align:right;"><td style="text-align:center">1939</td><td class="data_0_0_0_0">-7.5</td><td class="data_0_0_0_0">-6.6</td><td class="data_0_0_0_0">-1.4</td><td class="data_0_0_0_0">4.0</td><td class="data_0_0_0_0">7.5</td><td class="data_0_0_0_0">13.0</td><td class="data_0_0_0_0">17.4</td><td class="data_0_0_0_0">20.0</td><td class="data_0_0_0_0">17.4</td><td class="data_0_0_0_0">9.7</td><td class="data_0_0_0_0">3.0</td><td class="data_0_0_0_0">-2.5</td><td class="data_0_0_0_0">6.2</td></tr>
【问题讨论】:
也许 print ','.join(str(t) for t in rows),但你仍然会在行中包含很多 html 标签等,除非没关系。跨度> 可能更像 csv_rows = ','.join([r.text for r in rows]) @Totem 你能看到我的编辑吗? @jean,请添加您正在使用的示例 HTML 作为问题的一部分? 除了别人的建议,你也应该把你的输出文件改成fo.csv
。
【参考方案1】:
这是 csv 库的一项工作,获取每行中的每个 td 并提取文本,它将处理每行中缺少值的位置:
from bs4 import BeautifulSoup
import urllib2
import csv
url = 'http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_s3_en.php?block_no=47401&view=1'
html = urllib2.urlopen(url).read()
soup = BeautifulSoup(html)
table = soup.select_one("table.data2_s")
# python3 just use th.text
headers = [th.text.encode("utf-8") for th in table.select("tr th")]
with open("out.csv", "w") as f:
wr = csv.writer(f)
wr.writerow(headers)
wr.writerows([[td.text.encode("utf-8") for td in row.find_all("td")] for row in table.select("tr + tr")])
与您在页面上看到的表格完全匹配:
:~$ cat out.csv
Year,Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec,Annual
1938,-5.2,-4.9,-0.6,4.7,9.5,11.6,17.9,22.2,16.5,10.7,3.3,-4.7,6.8
1939,-7.5,-6.6,-1.4,4.0,7.5,13.0,17.4,20.0,17.4,9.7,3.0,-2.5,6.2
1940,-6.0,-5.7,-0.5,3.5,8.5,11.0,16.6,19.7,15.6,10.4,3.7,-1.0,6.3
1941,-6.5,-5.8,-2.6,3.6,8.1,11.4,12.7,16.5,16.0,10.0,4.0,-2.9,5.4
1942,-7.8,-8.2,-0.8,3.5,7.1,12.0,17.4,18.4,15.7,10.5,2.5,-2.9,5.6
1943,-4.1,-6.1,-1.1,3.5,6.9,12.9,19.3,21.5,17.5,11.7,1.2,-3.6,6.6
1944,-7.7,-7.9,-2.2,1.7,8.9,13.7,19.0,21.3,16.6,10.8,1.3,-6.0,5.8
1945,-7.8,-6.9,-1.8,3.9,5.5,11.0,13.6,18.7,16.8,11.0,3.9,-4.8,5.3
1946,-6.5,-6.0,-3.3,4.5,7.6,14.9,18.2,22.2,16.9,11.5,4.4,-2.5,6.8
1947,-4.9,-5.5,-2.3,3.7,9.0,11.2,17.1,19.3,15.1,10.6,2.4,-4.6,5.9
1948,-2.7,-4.4,-0.2,6.0,10.7,12.2,16.2,22.0,16.9,11.1,4.2,-0.6,7.6
1949,-2.6,-2.8,-3.4,2.0,9.4,11.8,16.9,20.8,17.8,10.8,3.1,-3.8,6.7
1950,-5.7,-4.8,-1.3,4.0,9.2,14.6,19.3,22.6,16.8,9.0,3.0,-2.9,7.0
1951,-6.7,-6.5,-2.2,3.7,9.5,12.3,16.7,22.3,15.6,10.1,3.7,-0.3,6.5
1952,-5.7,-7.1,-2.4,3.8,8.3,13.1,16.4,19.7,17.0,11.3,0.9,-7.1,5.7
1953,-7.7,-7.3,-0.9,3.6,6.9,11.1,16.8,19.2,17.6,11.2,-0.6,-2.6,5.6
1954,-6.7,-4.1,-2.5,4.0,7.5,11.0,13.7,17.0,17.2,9.5,3.2,-1.8,5.7
1955,-6.4,-4.8,-1.3,4.7,7.0,12.7,20.3,19.5,15.5,10.6,3.6,-0.4,6.8
1956,-6.1,-4.6,-2.0,5.1,10.8,11.2,13.8,16.3,17.2,12.3,2.8,-2.6,6.2
1957,-3.9,-5.5,-2.9,4.4,9.3,10.9,17.1,18.2,15.5,11.1,5.4,-1.1,6.5
1958,-4.9,-4.9,-2.3,4.4,8.5,12.6,17.5,18.3,16.8,10.6,4.5,-0.5,6.7
1959,-7.3,-2.8,0.8,6.4,9.4,12.7,17.1,18.5,16.2,11.6,2.9,-3.9,6.8
1960,-7.2,-5.2,-1.4,3.5,7.7,10.8,15.9,20.8,18.1,9.7,3.3,-3.9,6.0
1961,-7.7,-5.3,-1.4,5.5,8.7,14.7,19.5,20.0,18.9,10.4,4.1,-1.3,7.2
1962,-4.2,-5.4,-2.5,6.7,10.0,12.9,16.8,17.7,16.6,9.9,2.6,-1.5,6.6
1963,-3.6,-3.7,0.1,5.0,10.4,12.4,16.8,17.1,15.6,10.7,4.3,-1.7,7.0
1964,-4.5,-7.7,-1.3,3.7,9.9,11.9,15.3,17.7,14.9,10.0,3.6,-1.9,6.0
1965,-4.1,-5.7,-2.8,3.2,9.1,13.3,15.2,18.8,15.8,11.4,2.1,-2.6,6.1
1966,-5.0,-5.5,-1.0,3.2,8.1,12.2,15.3,17.5,15.4,11.6,4.1,-4.4,6.0
1967,-6.8,-5.9,-0.7,4.5,10.0,11.4,16.4,20.5,15.5,11.0,1.8,-1.5,6.4
1968,-4.2,-4.7,1.9,5.7,8.9,14.5,17.3,18.1,15.9,9.1,5.3,-0.7,7.3
1969,-7.3,-7.5,-2.5,3.9,7.2,10.6,17.0,16.5,16.1,9.4,2.2,-5.4,5.0
1970,-6.6,-6.0,-4.2,4.6,10.4,12.9,17.4,19.2,16.8,10.5,4.3,-3.3,6.3
1971,-6.3,-6.4,-1.7,4.1,7.6,11.6,15.8,17.2,15.2,11.5,3.4,-2.2,5.8
1972,-5.3,-5.0,-0.6,5.9,9.4,12.8,16.8,20.4,15.7,10.9,1.9,-1.4,6.8
1973,-4.2,-5.3,-2.9,4.2,8.4,12.8,17.0,20.9,17.1,10.4,3.5,-1.9,6.7
1974,-2.6,-4.6,-2.1,4.0,8.4,11.8,16.8,18.8,16.5,10.1,1.9,-5.7,6.1
1975,-4.1,-6.1,-1.5,4.3,8.4,13.7,16.1,20.6,17.3,10.4,3.8,-3.8,6.6
1976,-4.6,-3.5,-1.4,4.0,8.9,11.9,17.5,17.6,15.7,10.2,1.3,-2.0,6.3
1977,-8.3,-7.1,-1.0,3.6,8.0,11.9,18.2,19.1,17.4,11.4,4.5,-1.8,6.3
1978,-6.7,-9.2,-1.6,4.3,9.2,13.5,20.6,21.3,17.4,9.6,3.4,-2.1,6.6
1979,-6.9,-4.5,-2.5,2.7,7.8,13.2,15.8,20.3,16.9,11.3,2.9,-0.1,6.4
1980,-5.4,-7.1,-1.9,1.9,7.8,12.9,15.9,16.5,16.0,10.0,4.3,-0.6,5.9
1981,-5.4,-6.3,-2.6,5.6,8.1,11.8,17.1,18.7,16.0,10.5,0.8,-0.6,6.1
1982,-5.6,-5.3,-0.6,3.7,9.0,11.9,16.9,21.0,17.5,11.4,4.3,-1.0,6.9
1983,-4.2,-7.6,-1.9,6.8,8.2,8.5,14.5,18.9,15.8,8.9,4.8,-2.1,5.9
1984,-4.9,-6.6,-3.3,2.9,7.9,15.5,19.5,20.5,16.6,9.2,2.3,-3.6,6.3
1985,-8.7,-4.8,-1.4,4.9,8.6,11.7,16.6,21.1,15.7,10.3,2.7,-4.2,6.0
1986,-7.2,-6.5,-2.4,4.6,8.4,11.2,14.4,19.6,16.8,9.1,2.1,-1.9,5.7
1987,-6.4,-5.6,-1.4,4.2,8.6,12.6,17.5,18.0,16.4,11.1,2.0,-3.1,6.2
1988,-4.8,-6.3,-1.8,4.1,8.0,12.6,14.1,20.4,16.1,10.4,2.0,-1.5,6.1
1989,-2.6,-2.4,0.8,4.0,8.2,10.7,18.4,20.4,16.8,10.8,4.8,-1.3,7.4
1990,-5.7,-2.4,1.4,5.7,9.3,13.4,18.9,20.3,17.1,13.3,6.2,1.2,8.2
1991,-1.6,-3.6,-1.5,4.8,10.1,14.3,16.2,19.0,16.6,11.8,3.5,-2.3,7.3
1992,-3.6,-3.6,-0.4,3.7,8.1,12.1,17.6,18.0,14.9,11.1,3.2,-1.2,6.7
1993,-2.7,-3.3,-0.2,3.1,8.6,10.7,15.6,17.6,16.3,11.1,3.7,-1.6,6.6
1994,-6.1,-2.7,-1.3,4.4,10.0,12.8,17.4,21.7,17.5,11.8,4.3,-2.9,7.2
1995,-4.0,-4.0,-0.8,4.8,11.0,12.7,18.4,19.3,16.3,12.3,5.2,-0.6,7.6
1996,-4.6,-4.5,-1.0,3.5,6.9,12.0,15.9,18.7,16.8,10.4,2.3,-2.4,6.2
1997,-3.0,-3.3,-1.5,4.3,7.3,11.7,17.4,17.2,16.1,10.3,6.4,-0.7,6.9
1998,-6.9,-5.1,0.3,5.3,10.1,12.9,15.5,18.1,17.2,12.5,2.0,-2.4,6.6
1999,-4.1,-5.6,-2.6,4.2,8.4,14.5,16.6,21.0,18.3,11.2,3.8,-1.9,7.0
2000,-4.2,-5.6,-2.1,3.5,9.3,12.8,18.9,21.5,17.7,10.6,1.5,-4.1,6.7
2001,-6.3,-7.7,-2.4,4.7,8.5,13.0,17.4,18.7,15.6,10.8,4.0,-4.2,6.0
2002,-3.6,-1.0,0.5,6.8,11.1,12.1,15.7,17.1,17.0,10.8,2.3,-4.4,7.0
2003,-4.7,-5.6,-0.7,5.3,10.1,13.9,14.3,18.4,16.6,11.3,4.5,-1.4,6.8
2004,-3.9,-3.0,-0.5,4.4,10.6,14.6,16.8,19.7,17.8,11.8,5.9,-2.0,7.7
2005,-4.6,-5.7,-1.0,3.9,7.0,14.3,16.7,21.0,17.9,12.6,4.9,-2.3,7.1
2006,-5.5,-4.7,-0.9,2.1,9.3,11.9,18.4,21.6,17.7,11.0,4.5,-1.8,7.0
2007,-3.7,-3.2,-0.7,3.5,7.6,14.3,16.7,20.4,17.0,10.9,3.0,-1.7,7.0
2008,-6.0,-4.8,0.6,6.0,8.3,11.9,17.9,18.8,17.9,11.5,3.8,-0.4,7.1
2009,-2.4,-4.4,0.0,4.5,10.0,12.3,14.8,18.6,16.9,11.4,3.1,-2.2,6.9
2010,-3.4,-4.9,-1.4,3.5,7.3,15.0,18.1,22.4,18.4,11.4,4.8,-1.1,7.5
2011,-5.1,-2.2,-0.6,4.4,6.5,12.8,17.5 ),21.5,18.3,12.1,4.9,-2.3,7.3
2012,-5.4,-6.4,-2.4,4.6,8.9,12.6,17.2,20.4,19.4,11.8,3.8,-3.0,6.8
2013,-5.8,-5.1,-1.3,4.5,7.2,14.0,18.9,20.2,17.6,11.8,5.5,-0.2,7.3
2014,-5.3,-4.2,-1.2,3.9,8.7,13.9,19.2,20.0,16.7,11.0,4.8,-2.3,7.1
2015,-2.9,-1.7,2.3,5.9,9.9,12.1,17.6,19.0,17.3,10.4,3.7,-0.2,7.8
2016,-5.2,-4.7,0.5,4.3,11.4,12.5,17.4,21.8 ], , , , ,5.2 ]
如果你想要标题使用table.select_one("caption.m").text
:
with open("out.csv", "w") as f:
wr = csv.writer(f)
wr.writerow([table.select_one("caption.m").text.encode("utf-8")])
wr.writerow(headers)
wr.writerows([[td.text.encode("utf-8") for td in row.find_all("td")]
for row in table.select("tr + tr")])
但最好将其用作文件名,而不是将其添加到 csv 中。
如果您真的想在没有 csv 的情况下执行此操作,请使用与 str.join 相同的逻辑:
table = soup.select_one("table.data2_s")
headers = [th.text.encode("utf-8") for th in table.select("tr th")]
with open("out.csv", "w") as f:
f.write(",".join(headers) + "\n")
f.writelines(",".join([td.text.encode("utf-8") for td in row.find_all("td")]) + "\n"
for row in table.select("tr + tr"))
如果你想用N/A
替换空单元格:
with open("out.csv", "w") as f:
f.write(",".join(headers) + "\n")
f.writelines(",".join([td.text.encode("utf-8").strip('\xe3\x80\x80') or "N/A" for td in row.find_all("td")]) + "\n"
for row in table.select("tr + tr"))
这会将最后一行更改为:
2016,-5.2,-4.7,0.5,4.3,11.4,12.5,17.4,21.8 ],N/A,N/A,N/A,N/A,5.2 ]
缺失值的空格是 unicode ideographic space 字符(u"\u3000" in python)当编码为 utf-8 时会变成并剥离,如果那样的话留下一个空字符串然后我们就用"N/A"
In [7]: print u"\u3000"
In [8]: u"\u3000".encode("utf-8")
Out[8]: '\xe3\x80\x80'
In [9]: u"\u3000".encode("utf-8").strip('\xe3\x80\x80')
Out[9]: ''
【讨论】:
【参考方案2】:使用 Python 中的 csv
模块来执行此操作。如果需要,您显然可以编写更多列,但想法是您正在将 list
写入 csv 文件。如果您想引用事物、转义事物等,您可以在 writer()
方法中指定其他选项。
import csv
with open('your_csv_name.csv', 'w') as o:
w = csv.writer(o)
# Headers
w.writerow(['tr_content'])
# Write the tr text
for r in rows:
w.writerow([r])
【讨论】:
它包含在默认的 Python 安装中,没有理由不使用它。【参考方案3】:这是不使用csv
模块的另一种方式:
fp=open('data.csv','w')
for row in rows[:-1]: # Removed last row as it has empty cells that gives error which can also be resolved if needed
fp.write(row.get_text(',') + '\n')
fp.close()
可以直接打开data.csv文件。
车站详情可通过以下命令获取:
>>>> table = soup.find_all('table', class_='data2_s')
>>>> print table[0].find_all('caption')[0].get_text().encode('ascii', 'ignore')
WAKKANAI WMO Station ID:47401 Lat 45o24.9'N Lon 141o40.7'E
希望这会有所帮助。
【讨论】:
是的,太好了!它运作良好。顺便说一下如何获取WAKKANAI WMO Station ID:47401 Lat 45o24.9'N Lon 141o40.7'E
作为文本字符串
谢谢,是的,但那是 unicode,如何将 WAKKANAI
、`45o24.9'N' 和 '141o40.7'E' 的文本提取为字符串。
最后一行有您因切片而丢失的数据。
@PadraicCunningham 是的,但在这种情况下没有 csv,如何将空白单元格作为“na”?
您可以使用encode
将unicode数据转换为文本。更新了答案。关于切片最后一行,它有一些非数字字符,例如']'和'['【参考方案4】:
import csv
from bs4 import BeautifulSoup
import pandas as pd
html = open('test.html').read()
soup = BeautifulSoup(html, features='lxml')
#Specify table name which you want to read.
#Example: <table class="queryResults" border="0" cellspacing="1">
table = soup.select_one('table.queryResults')
def get_all_tables(soup):
return soup.find_all("table")
tbls = get_all_tables(soup)
for i, tablen in enumerate(tbls, start=1):
print(i)
print(tablen)
def get_table_headers(table):
headers = []
for th in table.find("tr").find_all("th"):
headers.append(th.text.strip())
return headers
head = get_table_headers(table)
#print(head)
def get_table_rows(table):
rows = []
for tr in table.find_all("tr")[1:]:
cells = []
# grab all td tags in this table row
tds = tr.find_all("td")
if len(tds) == 0:
# if no td tags, search for th tags
# can be found especially in wikipedia tables below the table
ths = tr.find_all("th")
for th in ths:
cells.append(th.text.strip())
else:
# use regular td tags
for td in tds:
cells.append(td.text.strip())
rows.append(cells)
return rows
table_rows = get_table_rows(table)
#print(table_rows)
def save_as_csv(table_name, headers, rows):
pd.DataFrame(rows, columns=headers).to_csv(f"table_name.csv")
save_as_csv("Test_table", head, table_rows)
【讨论】:
以上是关于将 HTML 转换为 CSV的主要内容,如果未能解决你的问题,请参考以下文章