plt.cm.get_cmap 中可以使用哪些名称?

Posted

技术标签:

【中文标题】plt.cm.get_cmap 中可以使用哪些名称?【英文标题】:What names can be used in plt.cm.get_cmap? 【发布时间】:2018-04-28 09:05:57 【问题描述】:

我有这个代码:

plt.scatter(data_projected[:,0],data_projected[:,1],c=digits.target
        ,edgecolors='none',alpha=0.5,cmap=plt.cm.get_cmap('nipy_spectral',10));    

我的困惑来自 plt.cm.get_cmap('nipy_spectral',10)。有时会有 plt.cm.get_cmap('RdYlBu') 代替。

'RdYlBu','nipy_spectral' 是颜色的名称吗?还有其他名称可以代替吗?

是否有所有可用颜色的列表?

我已阅读the document,但似乎没有帮助或我不明白。

【问题讨论】:

plt.cm.datad.keys() 生成所有颜色图名称。 【参考方案1】:

plt.cm.get_cmap('nipy_spectral',10) 的第一个参数是颜色图的名称。您可以通过

获取所有可用颜色图的列表
import matplotlib.cm
print(matplotlib.cm.cmap_d.keys())

或者你可以看看colormap reference。

【讨论】:

成功了!!!谢谢,我在matplotlib.org/2.1.0/api/…得到了其他帮助@ 不幸的是,在 matplotlib 3.3.1 版中,当我尝试阅读 matplotlib.cm.cmap_d 时,我得到了 MatplotlibDeprecationWarning: The global colormaps dictionary is no longer considered public API.【参考方案2】:

从 matplotlib >= 1.5.0 开始,一种方法是调用 higher-level matplotlib.pyplot.colormaps() getter function,而不是直接访问较低级别的数据结构(例如,matplotlib.cm.cmap_dmatplotlib.cm.datad)。

调用matplotlib.pyplot.colormaps() 的优点是对所有返回的颜色图的名称进行隐式排序(按字典顺序)。由于matplotlib.cm.cmap_d 目前是作为标准的无序字典实现的,因此在ImportanceOfBeingErnest's answer 中打印或迭代其键会比较麻烦:例如,

# The pyplot.colormap() approach (works with matplotlib >= 1.5.0 ).
>>> import matplotlib.pyplot as plt
>>> print(plt.colormaps())
['Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'seismic', 'seismic_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'viridis', 'viridis_r', 'winter', 'winter_r']

# The direct matplotlib.cm approach (also works with matplotlib < 1.5.0)
>>> import matplotlib.cm
>>> print(matplotlib.cm.cmap_d.keys())
dict_keys(['Blues', 'BrBG', 'BuGn', 'BuPu', 'CMRmap', 'GnBu', 'Greens', 'Greys', 'OrRd', 'Oranges', 'PRGn', 'PiYG', 'PuBu', 'PuBuGn', 'PuOr', 'PuRd', 'Purples', 'RdBu', 'RdGy', 'RdPu', 'RdYlBu', 'RdYlGn', 'Reds', 'Spectral', 'Wistia', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd', 'afmhot', 'autumn', 'binary', 'bone', 'brg', 'bwr', 'cool', 'coolwarm', 'copper', 'cubehelix', 'flag', 'gist_earth', 'gist_gray', 'gist_heat', 'gist_ncar', 'gist_rainbow', 'gist_stern', 'gist_yarg', 'gnuplot', 'gnuplot2', 'gray', 'hot', 'hsv', 'jet', 'nipy_spectral', 'ocean', 'pink', 'prism', 'rainbow', 'seismic', 'spring', 'summer', 'terrain', 'winter', 'Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c', 'Blues_r', 'BrBG_r', 'BuGn_r', 'BuPu_r', 'CMRmap_r', 'GnBu_r', 'Greens_r', 'Greys_r', 'OrRd_r', 'Oranges_r', 'PRGn_r', 'PiYG_r', 'PuBu_r', 'PuBuGn_r', 'PuOr_r', 'PuRd_r', 'Purples_r', 'RdBu_r', 'RdGy_r', 'RdPu_r', 'RdYlBu_r', 'RdYlGn_r', 'Reds_r', 'Spectral_r', 'Wistia_r', 'YlGn_r', 'YlGnBu_r', 'YlOrBr_r', 'YlOrRd_r', 'afmhot_r', 'autumn_r', 'binary_r', 'bone_r', 'brg_r', 'bwr_r', 'cool_r', 'coolwarm_r', 'copper_r', 'cubehelix_r', 'flag_r', 'gist_earth_r', 'gist_gray_r', 'gist_heat_r', 'gist_ncar_r', 'gist_rainbow_r', 'gist_stern_r', 'gist_yarg_r', 'gnuplot_r', 'gnuplot2_r', 'gray_r', 'hot_r', 'hsv_r', 'jet_r', 'nipy_spectral_r', 'ocean_r', 'pink_r', 'prism_r', 'rainbow_r', 'seismic_r', 'spring_r', 'summer_r', 'terrain_r', 'winter_r', 'Accent_r', 'Dark2_r', 'Paired_r', 'Pastel1_r', 'Pastel2_r', 'Set1_r', 'Set2_r', 'Set3_r', 'tab10_r', 'tab20_r', 'tab20b_r', 'tab20c_r', 'magma', 'magma_r', 'inferno', 'inferno_r', 'plasma', 'plasma_r', 'viridis', 'viridis_r', 'cividis', 'cividis_r'])

瞧! 健全的 API + 人类可读性 = 很好 .

【讨论】:

请注意,plt.colormaps() 只返回 sorted(matplotlib.cm.cmap_d)。不确定信息来自哪里,但据我了解cmap_d 未来不太可能改变。此外,考虑到通常不需要使用 pyplot,而 matplotlib.cm 很容易在任何地方导入。

以上是关于plt.cm.get_cmap 中可以使用哪些名称?的主要内容,如果未能解决你的问题,请参考以下文章

使用 Matplotlib 以图例样式绘制离散颜色条

iPhone 应用名称中允许使用哪些字符

分支名称中的哪些字符是非法的?

分支名称中的哪些字符是非法的?

Linux中service命令有哪些参数

如何确定哪些容器使用 docker 卷?