在 Python 中实现 Typescript 接口
Posted
技术标签:
【中文标题】在 Python 中实现 Typescript 接口【英文标题】:Implementing Typescript interfaces in Python 【发布时间】:2020-08-30 09:08:36 【问题描述】:我正在寻找一些关于在 Python 中实现一组仅数据值“接口”的最佳方法的建议,这些接口相当于它们的打字稿对应物(我们有一个项目,我们同时使用这两种接口,并希望为他们的通信强制执行一致的接口,这将通过将 python 序列化为 json 以拉入 TS 组件)
接口将是组合,以保持模块化和简单。
给定一组 TS 接口定义为:
interface TestOutput
phantom: string
testDateTime: datetime
author: string
result: boolean
report_summaryFile?: string // the '?' means this field is optional
// ... more values
series: Array<Series>
soloImages: Array<Images>
interface Series
number: number
filter: string
kernel: string
// ... more values
images: Array<TestImage>
我正在考虑使用 dataclasses 并执行以下操作:
from dataclasses import dataclass
from typing import List
import datetime
@dataclass
class TestSeries:
seriesNum: int
modality: str
description: str = ''
@dataclass
class TestOutput:
phantom: str
testDateTime: datetime.datetime
author: str
result: bool
series: List[TestSeries]
soloImages: List[Images]
report_summaryFile: str = ''
数据类是最好的方法吗?
【问题讨论】:
听起来很合理。您可以将任何数据类实例插入json.dumps(dataclass.as_dict(my_instance))
以从中获取有效的 json 字符串,如果您在运行时需要实际类型断言而不是类型注释,则可以转换为使用 pydantic
。
@Arne - 太好了 - 谢谢你的想法。我会检查 pydantic
当然,但请注意,dataclasses.dataclass
只是一种使用更少样板创建常规类的方法
【参考方案1】:
pydantic 是一个很好的库。 我做了类似的事情,但仅适用于数据类 - ValidatedDC:
from dataclasses import dataclass
from typing import List
from validated_dc import ValidatedDC
import json
@dataclass
class Series(ValidatedDC):
series_num: int
modality: str
description: str = ''
@dataclass
class Output(ValidatedDC):
phantom: str
date_time: str
author: str
result: bool
series: List[Series]
report_summary_file: str = ''
# For example, by API we got a JSON string:
input_json_string = '''
"phantom": "test_phantom",
"date_time": "2020.01.01",
"author": "Peter",
"result": true,
"series": [
"series_num": 1,
"modality": "test_modality"
]
'''
# Load the string into the dictionary:
input_data = json.loads(input_json_string)
# Then create a dataclass to check the types of values and for the
# convenience of further work with data:
output = Output(**input_data)
# Since valid data were obtained, there are no errors
assert output.get_errors() is None
# Let's say we got data with an error:
input_data['series'][0]['series_num'] = '1' # The string is not an integer!
output = Output(**input_data)
assert output.get_errors()
print(output.get_errors())
#
# 'series': [
# InstanceValidationError(
# value_repr="'series_num': '1', 'modal...",
# value_type=<class 'dict'>,
# annotation=<class '__main__.Series'>, exception=None,
# errors=
# 'series_num': [
# BasicValidationError(
# value_repr='1', value_type=<class 'str'>,
# annotation=<class 'int'>, exception=None
# )
# ]
#
# ),
# ListValidationError(
# item_index=0, item_repr="'series_num': '1', 'modal...",
# item_type=<class 'dict'>, annotation=<class '__main__.Series'>
# )
# ]
#
更多详情请看这里:https://github.com/EvgeniyBurdin/validated_dc
【讨论】:
以上是关于在 Python 中实现 Typescript 接口的主要内容,如果未能解决你的问题,请参考以下文章