将 C++ 从 Oreilly 书籍翻译为 Objective-C 的问题(iOS 的 3D 编程)
Posted
技术标签:
【中文标题】将 C++ 从 Oreilly 书籍翻译为 Objective-C 的问题(iOS 的 3D 编程)【英文标题】:Issue in Translating C++ from Oreilly book to Objective-C (3D Programming for iOS) 【发布时间】:2013-02-27 11:09:47 【问题描述】:我目前正在阅读 Oreilly 的 3D Programming for ios 一书,并将所有内容从 C++ 转换为 Objective - C 用于多种目的,包括后期优化和对函数和 API 的深入理解。我更愿意学习利用新的 GLKit,而不是依赖 C++ 目前专门用于 iOS 开发的语言。以下是我迄今为止用于创建本书提供的 3D 圆锥模型的翻译代码。不幸的是,底部圆盘和锥体本身只出现了一小块,我不知道为什么。任何人都可以在这方面帮助我。拜托,如果您看到任何优化(我还没有完成,因为我还在翻译)或关于做任何事情的更好方法的建议,我很想听到一些反馈。我真的很想帮助找到问题。我找了几天没有结果。下面附上我正在输出的图像(它应该是一个完整的 3D 圆锥体)。
//
// IRenderingEngine2.m
// HelloArrow
//
// Created by TheGamingArt on 3/4/13.
// Copyright (c) 2013 Brandon Levasseur. All rights reserved.
//
#import "IRenderingEngine2.h"
#define STRINGIFY(A) #A
#import "Simple.frag"
#import "Simple.vert"
static const float RevolutionsPerSecond = 1;
static const float AnimationDuration = 0.25f;
static const float coneSlices = 40.f;
static const int numberOfConeVerticies = ((coneSlices/*number of coneSlices*/ +1) *2);
static const int numberOfDiskVerticies = (coneSlices + 2);
typedef struct
GLKVector3 Position;
GLKVector4 Color;
Vertex;
typedef struct
GLKQuaternion Start; //starting orientation
GLKQuaternion End; //ending orientation
GLKQuaternion Current; //current interpolated orientation
float Elapsed; //time span in seconds for a slerp fraction between 0 and 1
float Duration; //time span in seconds for a slerp fraction between 0 and 1
Animation; //enables smooth 3D transitions
@interface IRenderingEngine2()
GLuint framebuffer;
GLuint colorRenderbuffer;
GLuint depthRenderbuffer; //Because of this being 3D, need depthRender. If only 2d, only need colorRender
float currentAngle; //angles in degrees
float desiredAngle; //added for smooth rotation transition
Vertex cone[numberOfConeVerticies];
Vertex disk[numberOfDiskVerticies];
Animation animation;
GLuint simpleProgram;
-(float) getRotationDirection;
-(void)applyRotation:(float)degrees;
-(GLuint)buildProgramWithVertex:(const char *)vShaderSource andFragment:(const char *)fShaderSource;
-(void)applyOrthoWithMaxX:(float)maxX andMaxY:(float)maxY;
-(GLuint)buildShaderWithSource:(const char *)source shaderType:(GLenum)type;
-(GLKQuaternion) quaternionCreateFromVectors:(GLKVector3)v0 :(GLKVector3)v1;
@end
@implementation IRenderingEngine2
-(id)init
self = [super init];
if (self)
glGenRenderbuffers(1, &colorRenderbuffer);
glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);
return self;
-(void)setRenderWidth:(int)width andHeight:(int)height
const float coneRadius = 0.5f;
const float coneHeight = 1.866f;
// const int coneSlices = 40;
//Generate vertices for the disk....
//Uses triangle fan so the total number of vertices is n+2: one exxtra vertex for the center and another for closing the loop
//Allocate space for the disk vertices.
//m_disk.resize(coneSlices + 2)
int vertexIterator = 0;
disk[vertexIterator].Color = GLKVector4Make(0.75f, 0.75f, 0.75f, 1.0f);
disk[vertexIterator].Position.x = 0.0f;
disk[vertexIterator].Position.y = 1.0f - coneHeight;
disk[vertexIterator].Position.z = 0.0f;
vertexIterator++;
//Initialize the rim vertices of the triangle fan
const float dtheta = M_2_PI / coneSlices;
for (float theta = 0.0f; vertexIterator != numberOfDiskVerticies; theta += dtheta)
disk[vertexIterator].Color = GLKVector4Make(0.75f, 0.75f, 0.75f, 1.0f);
disk[vertexIterator].Position.x = coneRadius * cosf(theta);
disk[vertexIterator].Position.y = 1 - coneHeight;
disk[vertexIterator].Position.z = coneRadius * sinf(theta);
vertexIterator++;
//Generate vertices for body of cone
int vertexIterator = 0;
//Initialize the vertices of the triangle strip.
const float dtheta = M_2_PI /coneSlices;
for (float theta = 0; vertexIterator != numberOfConeVerticies ; theta += dtheta)
//Grayscale gradient
float brightness = abs(sinf(theta)); // creates a grayscale gradient as a cheap way to simulate lighting.. aka baked lighting hack
GLKVector4 color = GLKVector4Make(brightness, brightness, brightness, 1);
//Apex vertex
cone[vertexIterator].Position = GLKVector3Make(0.0f, 1.0f, 0.0f);
cone[vertexIterator].Color = color;
vertexIterator++;
//Rim vertex
cone[vertexIterator].Position.x = coneRadius * cosf(theta);
cone[vertexIterator].Position.y = 1 - coneHeight;
cone[vertexIterator].Position.z = coneRadius * sinf(theta);
cone[vertexIterator].Color = color;
vertexIterator++;
//Create the depth buffer
glGenRenderbuffers(1, &depthRenderbuffer);
glBindRenderbuffer(GL_RENDERBUFFER, depthRenderbuffer);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, width * [[UIScreen mainScreen] scale], height * [[UIScreen mainScreen] scale]);
//Create the framebuffer object and attach the color buffer.
glGenFramebuffers(1, &framebuffer);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, colorRenderbuffer);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depthRenderbuffer);
//Bind the color buffer for rendering
glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);
glViewport(0, 0, width * [[UIScreen mainScreen] scale], height * [[UIScreen mainScreen] scale]);
glEnable(GL_DEPTH_TEST);
simpleProgram = [self buildProgramWithVertex:SimpleVertexShader andFragment:SimpleFragmentShader];
glUseProgram(simpleProgram);
//Set the Projection Matrix
GLint projectionUniform = glGetUniformLocation(simpleProgram, "Projection");
GLKMatrix4 projectionMatrix = GLKMatrix4MakeFrustum(-1.6f, 1.6f, -2.4f, 2.4f, 5.0f, 10.0f);
glUniformMatrix4fv(projectionUniform, 1.0f, 0.0f, &projectionMatrix.m00);
-(void)render
GLuint positionSlot = glGetAttribLocation(simpleProgram, "Position");
GLuint colorSlot = glGetAttribLocation(simpleProgram, "SourceColor");
glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnableVertexAttribArray(positionSlot);
glEnableVertexAttribArray(colorSlot);
// animation.Current.w = 1.0f;
// animation.End.w = 1.0f;
// animation.Start.w = 1.0f;
GLKMatrix4 rotation = GLKMatrix4MakeWithQuaternion(animation.Current);
//Set the model-view matrix
GLint modelviewUniform = glGetUniformLocation(simpleProgram, "Modelview");
GLKMatrix4 modelviewMatrix = GLKMatrix4Translate(rotation, 0.0f, 0.0f, -7.0f);
glUniformMatrix4fv(modelviewUniform, 1.0f, 0.0f, &modelviewMatrix.m00);
//Draw the cone
GLsizei stride = sizeof(Vertex);
const GLvoid *pCoords = &cone[0].Position.x;
const GLvoid *pColors = &cone[0].Color.r; //changed here to r from x for Red
glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, stride, pCoords);
glVertexAttribPointer(colorSlot, 4, GL_FLOAT, GL_FALSE, stride, pColors);
glDrawArrays(GL_TRIANGLE_STRIP, 0, sizeof(cone)/sizeof(Vertex));
//Draw the disk that caps off the base of the cone
GLsizei stride = sizeof(Vertex);
const GLvoid *pCoords = &disk[0].Position.x;
const GLvoid *pColors = &disk[0].Color.r; //changed from x to r
glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, stride, pCoords);
glVertexAttribPointer(colorSlot, 4, GL_FLOAT, GL_FALSE, stride, pColors);
glDrawArrays(GL_TRIANGLE_FAN, 0, sizeof(disk)/sizeof(Vertex));
glDisableVertexAttribArray(positionSlot);
glDisableVertexAttribArray(colorSlot);
-(void)updateAnimationForTime:(float)timeStep
NSString *currentQuaternion = NSStringFromGLKQuaternion(animation.Current);
NSString *endQuaternion = NSStringFromGLKQuaternion(animation.End);
if ([currentQuaternion isEqualToString:endQuaternion])
return;
animation.Elapsed += timeStep;
if (animation.Elapsed >= AnimationDuration)
animation.Current = animation.End;
else
float mu = animation.Elapsed / AnimationDuration;
animation.Current = GLKQuaternionSlerp(animation.Start, animation.End, mu);
-(void)onRotate:(enum DeviceOrientation) orientation
GLKVector3 direction;
switch (orientation)
case DeviceOrientationUnknown:
case DeviceOrientationPortrait:
direction = GLKVector3Make(0.0f, 1.0f, 0.0f);
break;
case DeviceOrientationPortraitUpsideDown:
direction = GLKVector3Make(0.0f, -1.0f, 0.0f);
break;
case DeviceOrientationFaceDown:
direction = GLKVector3Make(0.0f, 0.0f, -1.0f);
break;
case DeviceOrientationFaceUp:
direction = GLKVector3Make(0.0f, 0.0f, 1.0f);
break;
case DeviceOrientationLandscapeLeft:
direction = GLKVector3Make(+1.0f, 0.0f, 0.0f);
break;
case DeviceOrientationLandscapeRight:
direction = GLKVector3Make(-1.0f, 0.0f, 0.0f);
break;
animation.Elapsed = 0;
animation.Start = animation.Current = animation.End;
// animation.End = GLKQuaternionMakeWi
GLKVector3 vector = GLKVector3Make(0.0f, 1.0f, 0.0f);
animation.End = [self quaternionCreateFromVectors:vector :direction];
// (GLKVector3Make(0.0f, 1.0f, 0.0f), direction);
-(float)getRotationDirection
float delta = desiredAngle - currentAngle;
// NSLog(@"delta: %f", delta);
if (delta == 0)
return 0;
bool counterclockwise = ((delta > 0 && delta <= 180) || (delta < -180));
float test = counterclockwise ? +1.0 : -1.0;
NSLog(@"Return Value: %f",test );
return counterclockwise ? +1 : -1; //problem
-(void)applyRotation:(float)degrees
-(void)applyOrthoWithMaxX
:(float)maxX andMaxY:(float)maxY
-(GLuint)buildProgramWithVertex:(const char *)vShaderSource andFragment:(const char *)fShaderSource
GLuint vertexShader = [self buildShaderWithSource:vShaderSource shaderType:GL_VERTEX_SHADER];
GLuint fragmentShader = [self buildShaderWithSource:fShaderSource shaderType:GL_FRAGMENT_SHADER];
GLuint programHandle = glCreateProgram();
glAttachShader(programHandle, vertexShader);
glAttachShader(programHandle, fragmentShader);
glLinkProgram(programHandle);
GLint linkSuccess;
glGetProgramiv(programHandle, GL_LINK_STATUS, &linkSuccess);
if (linkSuccess == GL_FALSE)
GLchar messages[256];
glGetProgramInfoLog(programHandle, sizeof(messages), 0, &messages[0]);
NSLog(@"%s", messages);
exit(1);
return programHandle;
-(GLuint)buildShaderWithSource:(const char *)source shaderType:(GLenum)type
GLuint shaderHandle = glCreateShader(type);
glShaderSource(shaderHandle, 1, &source, 0);
glCompileShader(shaderHandle);
GLint compileSuccess;
glGetShaderiv(shaderHandle, GL_COMPILE_STATUS, &compileSuccess);
if (compileSuccess == GL_FALSE)
GLchar messages[256];
glGetShaderInfoLog(shaderHandle, sizeof(messages), 0, &messages[0]);
NSLog(@"%s", messages);
exit(1);
return shaderHandle;
-(GLKQuaternion) createFromAxis:(GLKVector3)axis withAngle:(float)radians //Minor calculating issues
GLKQuaternion q;
q.w = cosf(radians / 2);
q.x = q.y = q.z = sinf(radians / 2);
q.x *= axis.x;
q.y *= axis.y;
q.z *= axis.z;
return q;
-(GLKQuaternion) quaternionCreateFromVectors:(GLKVector3)v0 :(GLKVector3)v1 // Minor calculating issues
GLKVector3 v1Negative = GLKVector3Negate(v1);
NSLog(@"strings: v0: %@ v1:%@", NSStringFromGLKVector3(v0), NSStringFromGLKVector3(v1Negative));
if (/*NSStringFromGLKVector3(v0) == NSStringFromGLKVector3(v1Negative)*/ v0.g == v1Negative.g)
return [self createFromAxis:GLKVector3Make(1.0f, 0.0f, 0.0f) withAngle:M_1_PI];
GLKVector3 c = GLKVector3CrossProduct(v0, v1);// v0.Cross(v1);
int d = GLKVector3DotProduct(v0, v1); // v0.Dot(v1);
int s = sqrt((1 + d) *2);
GLKQuaternion q;
q.x = c.x / s;
q.y = c.y / s;
q.z = c.z / s;
q.w = s / 2.0f;
return q;
@end
在大多数情况下,我想让它运行,然后需要学习如何实现 GLKQuanternions 以添加诸如
之类的方法m_animation.End = Quaternion::CreateFromVectors(vec3(0, 1, 0), direction);
又名:
inline QuaternionT<T> QuaternionT<T>::CreateFromVectors(const Vector3<T>& v0, const Vector3<T>& v1)
if (v0 == -v1)
return QuaternionT<T>::CreateFromAxisAngle(vec3(1, 0, 0), Pi);
Vector3<T> c = v0.Cross(v1);
T d = v0.Dot(v1);
T s = std::sqrt((1 + d) * 2);
QuaternionT<T> q;
q.x = c.x / s;
q.y = c.y / s;
q.z = c.z / s;
q.w = s / 2.0f;
return q;
作为一个临时插件,我在 Objective-C 中为四元数创建了相同的方法
-(GLKQuaternion) createFromAxis:(GLKVector3)axis withAngle:(float)radians //Minor calculating issues
GLKQuaternion q;
q.w = cosf(radians / 2);
q.x = q.y = q.z = sinf(radians / 2);
q.x *= axis.x;
q.y *= axis.y;
q.z *= axis.z;
return q;
-(GLKQuaternion) quaternionCreateFromVectors:(GLKVector3)v0 :(GLKVector3)v1 // Minor calculating issues
GLKVector3 v1Negative = GLKVector3Negate(v1);
NSLog(@"strings: v0: %@ v1:%@", NSStringFromGLKVector3(v0), NSStringFromGLKVector3(v1Negative));
if (/*NSStringFromGLKVector3(v0) == NSStringFromGLKVector3(v1Negative)*/ v0.g == v1Negative.g)
return [self createFromAxis:GLKVector3Make(1.0f, 0.0f, 0.0f) withAngle:M_1_PI];
GLKVector3 c = GLKVector3CrossProduct(v0, v1);// v0.Cross(v1);
int d = GLKVector3DotProduct(v0, v1); // v0.Dot(v1);
int s = sqrt((1 + d) *2);
GLKQuaternion q;
q.x = c.x / s;
q.y = c.y / s;
q.z = c.z / s;
q.w = s / 2.0f;
return q;
【问题讨论】:
你知道,你可以在 Objective C 中使用 C++,对吧? 不仅如此,C/C++ 通常比 Objective-C 更快。 GLKit 的主要优点之一是能够绕过多个缓冲区,这对初学者来说可能令人生畏(因此,如果您已经熟悉/熟悉它们,那么我不确定使用 GLKit 是否对您有利)。我是 O'Reilly 书的忠实粉丝,但主要将其用作参考资料。 我绝对知道我可以使用 C++(因为我显然正在阅读一本同时使用 C++ 和 Objective-C 的书......),我有理由不想使用它。 C++ 在速度方面与 Objective-C 的排名几乎相同,但也取决于您所利用和集成的内容。这本身就是一个有争议的讨论(向量实际上比 NSDictionaries 等工作慢一点)。我有目的地尝试利用原生 API,同时学习 C++ 方法。我想了解这将如何转化为另一端。 在大多数情况下,上面引用的内容与 C++ 对应的内容应该没有太大区别。我个人只是想弄清楚为什么它只渲染一些锥体/圆盘而不是全部。您在不绕过多个缓冲区的情况下引用的杠杆显然仍然可以使用,如上所示。本质上几乎都是 C。 良好的反应。看来我低估了你的 C 语言知识! 【参考方案1】:似乎我没有意识到 cmath 中的 Pi 函数是 const float Pi = 4 * std::stan(1.0f)。我所要做的就是重新计算为 const float dtheta = (M_PI * 2) / coneSlices;瞧。我想要任何关于改进的建议。
【讨论】:
我可以建议你改进一下你的法语——这个词是“voila”,而不是“vwala”:) Woooow,可悲的是,从某种意义上说,我是正统的法国人。或者,+1 表示聪明,哈哈。【参考方案2】:在之前,我还将我的四元数代码简化为以下内容:
-(GLKQuaternion) createQuaternionFromAnchor:(GLKVector3)anchor direction:(GLKVector3)direction
GLKVector3 axis = GLKVector3CrossProduct(anchor, direction);
if (GLKVector3Negate(direction).g == anchor.g)
axis = GLKVector3Make(1.0f, 0.0f, 0.0f);
float dot = GLKVector3DotProduct(anchor, direction);
float angle = acosf(dot);
GLKQuaternion Q_rot = GLKQuaternionMakeWithAngleAndVector3Axis(angle, axis);
Q_rot = GLKQuaternionNormalize(Q_rot);
return Q_rot;
我对 GLKit 源代码进行了一些研究,最后能够看到后端的一切工作方式。数学方面,考虑到一切都不像看起来那样,他们真的应该记录向量和矩阵之间的数据处理方式。
【讨论】:
以上是关于将 C++ 从 Oreilly 书籍翻译为 Objective-C 的问题(iOS 的 3D 编程)的主要内容,如果未能解决你的问题,请参考以下文章