将 C++ 从 Oreilly 书籍翻译为 Objective-C 的问题(iOS 的 3D 编程)

Posted

技术标签:

【中文标题】将 C++ 从 Oreilly 书籍翻译为 Objective-C 的问题(iOS 的 3D 编程)【英文标题】:Issue in Translating C++ from Oreilly book to Objective-C (3D Programming for iOS) 【发布时间】:2013-02-27 11:09:47 【问题描述】:

我目前正在阅读 Oreilly 的 3D Programming for ios 一书,并将所有内容从 C++ 转换为 Objective - C 用于多种目的,包括后期优化和对函数和 API 的深入理解。我更愿意学习利用新的 GLKit,而不是依赖 C++ 目前专门用于 iOS 开发的语言。以下是我迄今为止用于创建本书提供的 3D 圆锥模型的翻译代码。不幸的是,底部圆盘和锥体本身只出现了一小块,我不知道为什么。任何人都可以在这方面帮助我。拜托,如果您看到任何优化(我还没有完成,因为我还在翻译)或关于做任何事情的更好方法的建议,我很想听到一些反馈。我真的很想帮助找到问题。我找了几天没有结果。下面附上我正在输出的图像(它应该是一个完整的 3D 圆锥体)。

   //
//  IRenderingEngine2.m
//  HelloArrow
//
//  Created by TheGamingArt on 3/4/13.
//  Copyright (c) 2013 Brandon Levasseur. All rights reserved.
//

#import "IRenderingEngine2.h"

#define STRINGIFY(A) #A
#import "Simple.frag"
#import "Simple.vert"


static const float RevolutionsPerSecond = 1;
static const float AnimationDuration = 0.25f;
static const float coneSlices = 40.f;
static const int numberOfConeVerticies = ((coneSlices/*number of coneSlices*/ +1) *2);
static const int numberOfDiskVerticies = (coneSlices + 2);

typedef struct
    GLKVector3 Position;
    GLKVector4 Color;
Vertex;

typedef struct
    GLKQuaternion Start; //starting orientation
    GLKQuaternion End; //ending orientation
    GLKQuaternion Current; //current interpolated orientation
    float Elapsed; //time span in seconds for a slerp fraction between 0 and 1
    float Duration; //time span in seconds for a slerp fraction between 0 and 1
Animation; //enables smooth 3D transitions



@interface IRenderingEngine2()


    GLuint framebuffer;
    GLuint colorRenderbuffer;
    GLuint depthRenderbuffer; //Because of this being 3D, need depthRender. If only 2d, only need colorRender
    float currentAngle; //angles in degrees
    float desiredAngle; //added for smooth rotation transition

    Vertex cone[numberOfConeVerticies];
    Vertex disk[numberOfDiskVerticies];
    Animation animation;


    GLuint simpleProgram;


-(float) getRotationDirection;
-(void)applyRotation:(float)degrees;
-(GLuint)buildProgramWithVertex:(const char *)vShaderSource andFragment:(const char *)fShaderSource;
-(void)applyOrthoWithMaxX:(float)maxX andMaxY:(float)maxY;
-(GLuint)buildShaderWithSource:(const char *)source shaderType:(GLenum)type;
-(GLKQuaternion) quaternionCreateFromVectors:(GLKVector3)v0 :(GLKVector3)v1;

@end


@implementation IRenderingEngine2
-(id)init
    self = [super init];
    if (self) 

        glGenRenderbuffers(1, &colorRenderbuffer);
        glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);
    
    return self;


-(void)setRenderWidth:(int)width andHeight:(int)height


    const float coneRadius = 0.5f;
    const float coneHeight = 1.866f;
    //    const int coneSlices = 40;

    
        //Generate vertices for the disk....
        //Uses triangle fan so the total number of vertices is n+2: one exxtra vertex for the center and another for closing the loop

        //Allocate space for the disk vertices.
        //m_disk.resize(coneSlices + 2)
        int vertexIterator = 0;
        disk[vertexIterator].Color = GLKVector4Make(0.75f, 0.75f, 0.75f, 1.0f);
        disk[vertexIterator].Position.x = 0.0f;
        disk[vertexIterator].Position.y = 1.0f - coneHeight;
        disk[vertexIterator].Position.z = 0.0f;
        vertexIterator++;

        //Initialize the rim vertices of the triangle fan
        const float dtheta = M_2_PI / coneSlices;
        for (float theta = 0.0f; vertexIterator != numberOfDiskVerticies; theta += dtheta) 
            disk[vertexIterator].Color = GLKVector4Make(0.75f, 0.75f, 0.75f, 1.0f);
            disk[vertexIterator].Position.x = coneRadius * cosf(theta);
            disk[vertexIterator].Position.y = 1 - coneHeight;
            disk[vertexIterator].Position.z = coneRadius * sinf(theta);
            vertexIterator++;

        
    

    
        //Generate vertices for body of cone

        int vertexIterator = 0;
        //Initialize the vertices of the triangle strip.
        const float dtheta = M_2_PI /coneSlices;
        for (float theta = 0; vertexIterator != numberOfConeVerticies ; theta += dtheta) 
            //Grayscale gradient
            float brightness = abs(sinf(theta)); // creates a grayscale gradient as a cheap way to simulate lighting.. aka baked lighting hack
            GLKVector4 color = GLKVector4Make(brightness, brightness, brightness, 1);

            //Apex vertex
            cone[vertexIterator].Position = GLKVector3Make(0.0f, 1.0f, 0.0f);
            cone[vertexIterator].Color = color;
            vertexIterator++;

            //Rim vertex
            cone[vertexIterator].Position.x = coneRadius * cosf(theta);
            cone[vertexIterator].Position.y = 1 - coneHeight;
            cone[vertexIterator].Position.z = coneRadius * sinf(theta);
            cone[vertexIterator].Color = color;
            vertexIterator++;


        
    


    //Create the depth buffer
    glGenRenderbuffers(1, &depthRenderbuffer);
    glBindRenderbuffer(GL_RENDERBUFFER, depthRenderbuffer);
    glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, width * [[UIScreen mainScreen] scale], height * [[UIScreen mainScreen] scale]);


    //Create the framebuffer object and attach the color buffer.
    glGenFramebuffers(1, &framebuffer);
    glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);
    glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, colorRenderbuffer);
    glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depthRenderbuffer);

    //Bind the color buffer for rendering
    glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);


    glViewport(0, 0, width * [[UIScreen mainScreen] scale], height * [[UIScreen mainScreen] scale]);

    glEnable(GL_DEPTH_TEST);

    simpleProgram = [self buildProgramWithVertex:SimpleVertexShader andFragment:SimpleFragmentShader];
    glUseProgram(simpleProgram);

    //Set the Projection Matrix
    GLint projectionUniform = glGetUniformLocation(simpleProgram, "Projection");
    GLKMatrix4 projectionMatrix = GLKMatrix4MakeFrustum(-1.6f, 1.6f, -2.4f, 2.4f, 5.0f, 10.0f);
    glUniformMatrix4fv(projectionUniform, 1.0f, 0.0f, &projectionMatrix.m00);



-(void)render
    GLuint positionSlot = glGetAttribLocation(simpleProgram, "Position");
    GLuint colorSlot = glGetAttribLocation(simpleProgram, "SourceColor");

    glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);


    glEnableVertexAttribArray(positionSlot);
    glEnableVertexAttribArray(colorSlot);

//    animation.Current.w = 1.0f;
//    animation.End.w = 1.0f;
//    animation.Start.w = 1.0f;

    GLKMatrix4 rotation = GLKMatrix4MakeWithQuaternion(animation.Current);


    //Set the model-view matrix
    GLint modelviewUniform = glGetUniformLocation(simpleProgram, "Modelview");

    GLKMatrix4 modelviewMatrix = GLKMatrix4Translate(rotation, 0.0f, 0.0f, -7.0f);
    glUniformMatrix4fv(modelviewUniform, 1.0f, 0.0f, &modelviewMatrix.m00);

    //Draw the cone
    
    GLsizei stride = sizeof(Vertex);
    const GLvoid *pCoords = &cone[0].Position.x;
    const GLvoid *pColors = &cone[0].Color.r; //changed here to r from x for Red

    glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, stride, pCoords);
    glVertexAttribPointer(colorSlot, 4, GL_FLOAT, GL_FALSE, stride, pColors);

    glDrawArrays(GL_TRIANGLE_STRIP, 0, sizeof(cone)/sizeof(Vertex));
    

    //Draw the disk that caps off the base of the cone
    
        GLsizei stride = sizeof(Vertex);
        const GLvoid *pCoords = &disk[0].Position.x;
        const GLvoid *pColors = &disk[0].Color.r; //changed from x to r
        glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, stride, pCoords);
        glVertexAttribPointer(colorSlot, 4, GL_FLOAT, GL_FALSE, stride, pColors);

        glDrawArrays(GL_TRIANGLE_FAN, 0, sizeof(disk)/sizeof(Vertex));

    

    glDisableVertexAttribArray(positionSlot);
    glDisableVertexAttribArray(colorSlot);




-(void)updateAnimationForTime:(float)timeStep
    NSString *currentQuaternion = NSStringFromGLKQuaternion(animation.Current);
    NSString *endQuaternion = NSStringFromGLKQuaternion(animation.End);

    if ([currentQuaternion isEqualToString:endQuaternion]) 
        return;
    

    animation.Elapsed += timeStep;

    if (animation.Elapsed >= AnimationDuration) 
        animation.Current = animation.End;
    
    else
        float mu = animation.Elapsed / AnimationDuration;
        animation.Current = GLKQuaternionSlerp(animation.Start, animation.End, mu);
    


-(void)onRotate:(enum DeviceOrientation) orientation

    GLKVector3 direction;

    switch (orientation) 
        case DeviceOrientationUnknown:
        case DeviceOrientationPortrait:
            direction = GLKVector3Make(0.0f, 1.0f, 0.0f);
            break;

        case DeviceOrientationPortraitUpsideDown:
            direction = GLKVector3Make(0.0f, -1.0f, 0.0f);
            break;

        case DeviceOrientationFaceDown:
            direction = GLKVector3Make(0.0f, 0.0f, -1.0f);
            break;

        case DeviceOrientationFaceUp:
            direction = GLKVector3Make(0.0f, 0.0f, 1.0f);
            break;

        case DeviceOrientationLandscapeLeft:
            direction = GLKVector3Make(+1.0f, 0.0f, 0.0f);
            break;

        case DeviceOrientationLandscapeRight:
            direction = GLKVector3Make(-1.0f, 0.0f, 0.0f);
            break;
    

    animation.Elapsed = 0;
    animation.Start = animation.Current = animation.End;
    //   animation.End = GLKQuaternionMakeWi
    GLKVector3 vector = GLKVector3Make(0.0f, 1.0f, 0.0f);
    animation.End = [self quaternionCreateFromVectors:vector :direction];
    // (GLKVector3Make(0.0f, 1.0f, 0.0f), direction);




-(float)getRotationDirection
    float delta = desiredAngle - currentAngle;
    // NSLog(@"delta: %f", delta);

    if (delta == 0) 
        return 0;
    

    bool counterclockwise = ((delta > 0 && delta <= 180) || (delta < -180));

    float test = counterclockwise ? +1.0 : -1.0;
    NSLog(@"Return Value: %f",test );
    return counterclockwise ? +1 : -1; //problem




-(void)applyRotation:(float)degrees




-(void)applyOrthoWithMaxX
:(float)maxX andMaxY:(float)maxY



-(GLuint)buildProgramWithVertex:(const char *)vShaderSource andFragment:(const char *)fShaderSource
    GLuint vertexShader = [self buildShaderWithSource:vShaderSource shaderType:GL_VERTEX_SHADER];
    GLuint fragmentShader = [self buildShaderWithSource:fShaderSource shaderType:GL_FRAGMENT_SHADER];

    GLuint programHandle = glCreateProgram();
    glAttachShader(programHandle, vertexShader);
    glAttachShader(programHandle, fragmentShader);
    glLinkProgram(programHandle);

    GLint linkSuccess;
    glGetProgramiv(programHandle, GL_LINK_STATUS, &linkSuccess);
    if (linkSuccess == GL_FALSE) 
        GLchar messages[256];
        glGetProgramInfoLog(programHandle, sizeof(messages), 0, &messages[0]);
        NSLog(@"%s", messages);
        exit(1);
    

    return programHandle;



-(GLuint)buildShaderWithSource:(const char *)source shaderType:(GLenum)type
    GLuint shaderHandle = glCreateShader(type);
    glShaderSource(shaderHandle, 1, &source, 0);
    glCompileShader(shaderHandle);

    GLint compileSuccess;
    glGetShaderiv(shaderHandle, GL_COMPILE_STATUS, &compileSuccess);

    if (compileSuccess == GL_FALSE) 
        GLchar messages[256];
        glGetShaderInfoLog(shaderHandle, sizeof(messages), 0, &messages[0]);
        NSLog(@"%s", messages);
        exit(1);
    
    return shaderHandle;


-(GLKQuaternion) createFromAxis:(GLKVector3)axis withAngle:(float)radians //Minor calculating issues

    GLKQuaternion q;
    q.w = cosf(radians / 2);
    q.x = q.y = q.z = sinf(radians / 2);
    q.x *= axis.x;
    q.y *= axis.y;
    q.z *= axis.z;
    return q;



-(GLKQuaternion) quaternionCreateFromVectors:(GLKVector3)v0 :(GLKVector3)v1 // Minor calculating issues


    GLKVector3 v1Negative = GLKVector3Negate(v1);

    NSLog(@"strings: v0: %@ v1:%@", NSStringFromGLKVector3(v0), NSStringFromGLKVector3(v1Negative));
    if (/*NSStringFromGLKVector3(v0) == NSStringFromGLKVector3(v1Negative)*/ v0.g == v1Negative.g)
        return [self createFromAxis:GLKVector3Make(1.0f, 0.0f, 0.0f) withAngle:M_1_PI];

    GLKVector3 c =  GLKVector3CrossProduct(v0, v1);//  v0.Cross(v1);
    int d = GLKVector3DotProduct(v0, v1); // v0.Dot(v1);
    int s = sqrt((1 + d) *2);


    GLKQuaternion q;
    q.x = c.x / s;
    q.y = c.y / s;
    q.z = c.z / s;
    q.w = s / 2.0f;
    return q;



@end

在大多数情况下,我想让它运行,然后需要学习如何实现 GLKQuanternions 以添加诸如

之类的方法
m_animation.End = Quaternion::CreateFromVectors(vec3(0, 1, 0), direction);

又名:

inline QuaternionT<T> QuaternionT<T>::CreateFromVectors(const Vector3<T>& v0, const Vector3<T>& v1)

    if (v0 == -v1)
        return QuaternionT<T>::CreateFromAxisAngle(vec3(1, 0, 0), Pi);

    Vector3<T> c = v0.Cross(v1);
    T d = v0.Dot(v1);
    T s = std::sqrt((1 + d) * 2);

    QuaternionT<T> q;
    q.x = c.x / s;
    q.y = c.y / s;
    q.z = c.z / s;
    q.w = s / 2.0f;
    return q;

作为一个临时插件,我在 Objective-C 中为四元数创建了相同的方法

-(GLKQuaternion) createFromAxis:(GLKVector3)axis withAngle:(float)radians //Minor calculating issues

    GLKQuaternion q;
    q.w = cosf(radians / 2);
    q.x = q.y = q.z = sinf(radians / 2);
    q.x *= axis.x;
    q.y *= axis.y;
    q.z *= axis.z;
    return q;



-(GLKQuaternion) quaternionCreateFromVectors:(GLKVector3)v0 :(GLKVector3)v1 // Minor calculating issues


    GLKVector3 v1Negative = GLKVector3Negate(v1);

    NSLog(@"strings: v0: %@ v1:%@", NSStringFromGLKVector3(v0), NSStringFromGLKVector3(v1Negative));
    if (/*NSStringFromGLKVector3(v0) == NSStringFromGLKVector3(v1Negative)*/ v0.g == v1Negative.g)
        return [self createFromAxis:GLKVector3Make(1.0f, 0.0f, 0.0f) withAngle:M_1_PI];

    GLKVector3 c =  GLKVector3CrossProduct(v0, v1);//  v0.Cross(v1);
    int d = GLKVector3DotProduct(v0, v1); // v0.Dot(v1);
    int s = sqrt((1 + d) *2);


    GLKQuaternion q;
    q.x = c.x / s;
    q.y = c.y / s;
    q.z = c.z / s;
    q.w = s / 2.0f;
    return q;

【问题讨论】:

你知道,你可以在 Objective C 中使用 C++,对吧? 不仅如此,C/C++ 通常比 Objective-C 更快。 GLKit 的主要优点之一是能够绕过多个缓冲区,这对初学者来说可能令人生畏(因此,如果您已经熟悉/熟悉它们,那么我不确定使用 GLKit 是否对您有利)。我是 O'Reilly 书的忠实粉丝,但主要将其用作参考资料。 我绝对知道我可以使用 C++(因为我显然正在阅读一本同时使用 C++ 和 Objective-C 的书......),我有理由不想使用它。 C++ 在速度方面与 Objective-C 的排名几乎相同,但也取决于您所利用和集成的内容。这本身就是一个有争议的讨论(向量实际上比 NSDictionaries 等工作慢一点)。我有目的地尝试利用原生 API,同时学习 C++ 方法。我想了解这将如何转化为另一端。 在大多数情况下,上面引用的内容与 C++ 对应的内容应该没有太大区别。我个人只是想弄清楚为什么它只渲染一些锥体/圆盘而不是全部。您在不绕过多个缓冲区的情况下引用的杠杆显然仍然可以使用,如上所示。本质上几乎都是 C。 良好的反应。看来我低估了你的 C 语言知识! 【参考方案1】:

似乎我没有意识到 cmath 中的 Pi 函数是 const float Pi = 4 * std::stan(1.0f)。我所要做的就是重新计算为 const float dtheta = (M_PI * 2) / coneSlices;瞧。我想要任何关于改进的建议。

【讨论】:

我可以建议你改进一下你的法语——这个词是“voila”,而不是“vwala”:) Woooow,可悲的是,从某种意义上说,我是正统的法国人。或者,+1 表示聪明,哈哈。【参考方案2】:

在之前,我还将我的四元数代码简化为以下内容:

-(GLKQuaternion) createQuaternionFromAnchor:(GLKVector3)anchor direction:(GLKVector3)direction


    GLKVector3 axis = GLKVector3CrossProduct(anchor, direction);

    if (GLKVector3Negate(direction).g == anchor.g) 
        axis = GLKVector3Make(1.0f, 0.0f, 0.0f);
    


    float dot = GLKVector3DotProduct(anchor, direction);
        float angle = acosf(dot);
        GLKQuaternion Q_rot = GLKQuaternionMakeWithAngleAndVector3Axis(angle, axis);
        Q_rot = GLKQuaternionNormalize(Q_rot);
        return Q_rot;

我对 GLKit 源代码进行了一些研究,最后能够看到后端的一切工作方式。数学方面,考虑到一切都不像看起来那样,他们真的应该记录向量和矩阵之间的数据处理方式。

【讨论】:

以上是关于将 C++ 从 Oreilly 书籍翻译为 Objective-C 的问题(iOS 的 3D 编程)的主要内容,如果未能解决你的问题,请参考以下文章

为啥 C# 编译器将这个 != 比较翻译为 > 比较?

如何将 curl -T 命令翻译为邮递员?

防止组织模式将评论翻译为逐项环境

将中文文章翻译为英文时,如果文章中有分号,那翻译为英文时用句号还是分号还是逗号???

将“让静态 2 = 参数 1”翻译为 VM 代码

将 JSON 对象转换/翻译为打字稿类型/接口的工具?