正确校正 GPU 的立体图像(opencv)

Posted

技术标签:

【中文标题】正确校正 GPU 的立体图像(opencv)【英文标题】:Properly rectifying stereo images for GPU (opencv) 【发布时间】:2017-11-16 19:08:32 【问题描述】:

我使用 cv::StereoBM 已经有一段时间了,我正在尝试切换到 cuda::StereoBM(使用 GPU),但遇到了一个问题,即使使用相同的设置和输入图像,它们看起来也完全不同.我在this 帖子中读到,cuda 的输入需要以不同于 cv::StereoBM 的方式进行纠正。具体来说,视差必须在 [0,256] 范围内。我花了一段时间寻找其他有关如何为 cuda 纠正图像的示例,但没有结果。带有 cv::StereoBM 的输出看起来不错,因此我的图像已为此进行了适当的校正。有没有办法将一种整流类型转换为另一种?

如果有人有兴趣,这里是我用来校正立体声的代码(注意:在我通过这个程序运行它们之前,我正在校正每个图像以摆脱和“镜头效果”):

    #include "opencv2/core/core.hpp"
    #include "opencv2/calib3d/calib3d.hpp"
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    //#include "opencv2/contrib/contrib.hpp"
    #include <stdio.h>

    using namespace cv;
    using namespace std;

    int main(int argc, char* argv[])
    
        int numBoards = 20;
        int board_w = 9;
        int board_h = 14;

        Size board_sz = Size(board_w, board_h);
        int board_n = board_w*board_h;

        vector<vector<Point3f> > object_points;
        vector<vector<Point2f> > imagePoints1, imagePoints2;
        vector<Point2f> corners1, corners2;

        vector<Point3f> obj;
        for (int j=0; j<board_n; j++)
        
            obj.push_back(Point3f(j/board_w, j%board_w, 0.0f));
        

        Mat img1, img2, gray1, gray2, image1, image2;

    const char* right_cam_gst = "nvcamerasrc sensor-id=0 ! video/x-raw(memory:NVMM), format=UYVY, width=1280, height=720, framerate=30/1 ! nvvidconv flip-method=2 ! video/x-raw, format=GRAY8, width=1280, height=720 ! appsink";

    const char* Left_cam_gst = "nvcamerasrc sensor-id=1 ! video/x-raw(memory:NVMM), format=UYVY, width=1280, height=720, framerate=30/1 ! nvvidconv flip-method=2 ! video/x-raw, format=GRAY8, width=1280, height=720 ! appsink";


        VideoCapture cap1 = VideoCapture(right_cam_gst);
        VideoCapture cap2 = VideoCapture(Left_cam_gst);

        int success = 0, k = 0;
        bool found1 = false, found2 = false;

        Mat distCoeffs0;
        Mat intrinsic0;

        cv::FileStorage storage0("CamData0.yml", cv::FileStorage::READ);
        storage0["distCoeffs"] >> distCoeffs0;
        storage0["intrinsic"] >> intrinsic0;
        storage0.release();

        Mat distCoeffs1;
        Mat intrinsic1;

        cv::FileStorage storage1("CamData1.yml", cv::FileStorage::READ);
        storage1["distCoeffs"] >> distCoeffs1;
        storage1["intrinsic"] >> intrinsic1;
        storage1.release();


        while (success < numBoards)
        
            cap1 >> image1;
            cap2 >> image2;
            //resize(img1, img1, Size(320, 280));
            //resize(img2, img2, Size(320, 280));
             undistort(image1, img1, intrinsic0, distCoeffs0);
             undistort(image2, img2, intrinsic1, distCoeffs1);

           //  cvtColor(img1, gray1, CV_BGR2GRAY);
           // cvtColor(img2, gray2, CV_BGR2GRAY);




            found1 = findChessboardCorners(img1, board_sz, corners1, CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FILTER_QUADS);
            found2 = findChessboardCorners(img2, board_sz, corners2, CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FILTER_QUADS);

            if (found1)
            
                cornerSubPix(img1, corners1, Size(11, 11), Size(-1, -1), TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 30, 0.1));
                drawChessboardCorners(img1, board_sz, corners1, found1);
            

            if (found2)
            
                cornerSubPix(img2, corners2, Size(11, 11), Size(-1, -1), TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 30, 0.1));
                drawChessboardCorners(img2, board_sz, corners2, found2);
            

            imshow("image1", img1);
            imshow("image2", img2);

           k = waitKey(10);
        //    if (found1 && found2)
       //     
      //          k = waitKey(0);
      //      
            if (k == 27)
            
                break;
            
            if (k == ' ' && found1 !=0 && found2 != 0)
            
                imagePoints1.push_back(corners1);
                imagePoints2.push_back(corners2);
                object_points.push_back(obj);
                printf ("Corners stored\n");
                success++;

                if (success >= numBoards)
                
                    break;
                
            
        

        destroyAllWindows();
        printf("Starting Calibration\n");
        Mat CM1 = Mat(3, 3, CV_64FC1);
        Mat CM2 = Mat(3, 3, CV_64FC1);
        Mat D1, D2;
        Mat R, T, E, F;

        stereoCalibrate(object_points, imagePoints1, imagePoints2, 
                        CM1, D1, CM2, D2, img1.size(), R, T, E, F,
                        CV_CALIB_SAME_FOCAL_LENGTH | CV_CALIB_ZERO_TANGENT_DIST,
                        cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, 1e-5));

        FileStorage fs1("mystereocalib.yml", FileStorage::WRITE);
        fs1 << "CM1" << CM1;
        fs1 << "CM2" << CM2;
        fs1 << "D1" << D1;
        fs1 << "D2" << D2;
        fs1 << "R" << R;
        fs1 << "T" << T;
        fs1 << "E" << E;
        fs1 << "F" << F;

        printf("Done Calibration\n");

        printf("Starting Rectification\n");

        Mat R1, R2, P1, P2, Q;
        stereoRectify(CM1, D1, CM2, D2, img1.size(), R, T, R1, R2, P1, P2, Q);
        fs1 << "R1" << R1;
        fs1 << "R2" << R2;
        fs1 << "P1" << P1;
        fs1 << "P2" << P2;
        fs1 << "Q" << Q;
        fs1.release();
        printf("Done Rectification\n");

        printf("Applying Undistort\n");

        Mat map1x, map1y, map2x, map2y;
        Mat imgU1, imgU2, disp, disp8 , o1, o2;

        initUndistortRectifyMap(CM1, Mat(), R1, P1, img1.size(), CV_32FC1, map1x, map1y);
        initUndistortRectifyMap(CM2, Mat(), R2, P2, img2.size(), CV_32FC1, map2x, map2y);

        printf("Undistort complete\n");

        while(1)
            
            cap1 >> image1;
            cap2 >> image2;


  undistort(image1, img1, intrinsic0, distCoeffs0);
        undistort(image2, img2, intrinsic1, distCoeffs1);
        remap(img1, imgU1, map1x, map1y, INTER_LINEAR, BORDER_CONSTANT, Scalar());
        remap(img2, imgU2, map2x, map2y, INTER_LINEAR, BORDER_CONSTANT, Scalar());

        imshow("image1", imgU1);
        imshow("image2", imgU2);

        k = waitKey(5);

        if(k==27)
        
            break;
        
    

    cap1.release();
    cap2.release();

    return(0);

显示不同方法输出的图像:

StereoBM(使用 CPU)

cuda::StereoBM(使用 GPU)

【问题讨论】:

有什么办法可以澄清这个问题吗?或者没有人知道答案是什么。 @Zock77。请提供来自 opencv 和 cuda 的输出图像。还可以在此处提供您对 cuda 代码本身的试用。也许还有一些后端错误代码或回溯?这有助于解决手头的问题。 这个问题显然和CUDA编程无关,所以我把标签去掉了。 您的帖子中是否缺少某些内容? (“OP:此处链接到图像 [...]”,“我的 [...] 代码示例(尝试)在此处 [...]”) 哦,我明白了,这是后来的编辑,不是你自己做的。 【参考方案1】:

搞定了!看起来 CPU 和 GPU 之间的最大区别在于输入图像的归一化。整改可以保持不变。我从 opencv 中找到了一些示例代码,并将其简化为基本步骤,以查看所有步骤。令人惊讶的是,在视差计算之前或之后都没有进行归一化。这是 GPU 的工作代码:

#include <iostream>
#include <string>
#include <sstream>
#include <iomanip>
#include <stdexcept>
#include <opencv2/core/utility.hpp>
#include "opencv2/cudastereo.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"

using namespace cv;
using namespace std;



int main(int argc, char** argv)


          bool running;
          Mat left_src, right_src;
          Mat left, right;
          cuda::GpuMat d_left, d_right;

          int ndisp = 88;

          Ptr<cuda::StereoBM> bm;

          bm = cuda::createStereoBM(ndisp);



          // Load images
          left_src = imread("s1.png");
          right_src = imread("s2.png");

          cvtColor(left_src, left, COLOR_BGR2GRAY);
          cvtColor(right_src, right, COLOR_BGR2GRAY);


          d_left.upload(left);
          d_right.upload(right);

          imshow("left", left);
          imshow("right", right);



          // Prepare disparity map of specified type
          Mat disp(left.size(), CV_8U);
          cuda::GpuMat d_disp(left.size(), CV_8U);

          cout << endl;


          running = true;
          while (running)
          

              bm->compute(d_left, d_right, d_disp);

              // Show results
              d_disp.download(disp);

              imshow("disparity", (Mat_<uchar>)disp);

              waitKey(1);
          

    return 0;

【讨论】:

以上是关于正确校正 GPU 的立体图像(opencv)的主要内容,如果未能解决你的问题,请参考以下文章

基于OpenCV立体视觉标定和校正

OpenCV 校正,图像 C++ 上有太多黑色区域

图像校正 - OpenCV - Python

使用立体相机从视差图进行深度重建

深度相机-介绍

双摄像头立体成像-畸变矫正与立体校正