OpenCV 3 中的 PCA 错误
Posted
技术标签:
【中文标题】OpenCV 3 中的 PCA 错误【英文标题】:Error with PCA in OpenCV 3 【发布时间】:2016-05-23 14:41:31 【问题描述】:我正在尝试从此链接运行来自 OpenCV for PCA 的示例代码 PCA example.
但是在我运行之后它就崩溃了。我进行了调试,发现它在for loop
下方发生故障,它位于getOrientation
函数中:
for (int i = 0; i < 2; ++i)
eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0),
pca_analysis.eigenvectors.at<double>(i, 1));
eigen_val[i] = pca_analysis.eigenvalues.at<double>(0, i);
我之前在***中搜索过,有类似标题但错误不同的问题。有什么帮助吗?谢谢
这里是示例代码:
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
// Function declarations
void drawAxis(Mat&, Point, Point, Scalar, const float);
double getOrientation(const vector<Point> &, Mat&);
void drawAxis(Mat& img, Point p, Point q, Scalar colour, const float scale = 0.2)
double angle;
double hypotenuse;
angle = atan2((double)p.y - q.y, (double)p.x - q.x); // angle in radians
hypotenuse = sqrt((double)(p.y - q.y) * (p.y - q.y) + (p.x - q.x) * (p.x - q.x));
// double degrees = angle * 180 / CV_PI; // convert radians to degrees (0-180 range)
// cout << "Degrees: " << abs(degrees - 180) << endl; // angle in 0-360 degrees range
// Here we lengthen the arrow by a factor of scale
q.x = (int)(p.x - scale * hypotenuse * cos(angle));
q.y = (int)(p.y - scale * hypotenuse * sin(angle));
line(img, p, q, colour, 1, CV_AA);
// create the arrow hooks
p.x = (int)(q.x + 9 * cos(angle + CV_PI / 4));
p.y = (int)(q.y + 9 * sin(angle + CV_PI / 4));
line(img, p, q, colour, 1, CV_AA);
p.x = (int)(q.x + 9 * cos(angle - CV_PI / 4));
p.y = (int)(q.y + 9 * sin(angle - CV_PI / 4));
line(img, p, q, colour, 1, CV_AA);
double getOrientation(const vector<Point> &pts, Mat &img)
//Construct a buffer used by the pca analysis
int sz = static_cast<int>(pts.size());
Mat data_pts = Mat(sz, 2, CV_64FC1);
for (int i = 0; i < data_pts.rows; ++i)
data_pts.at<double>(i, 0) = pts[i].x;
data_pts.at<double>(i, 1) = pts[i].y;
//Perform PCA analysis
PCA pca_analysis(data_pts, Mat(), CV_PCA_DATA_AS_ROW);
//Store the center of the object
Point cntr = Point(static_cast<int>(pca_analysis.mean.at<double>(0, 0)),
static_cast<int>(pca_analysis.mean.at<double>(0, 1)));
//Store the eigenvalues and eigenvectors
vector<Point2d> eigen_vecs(2);
vector<double> eigen_val(2);
*for (int i = 0; i < 2; ++i)
eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0),
pca_analysis.eigenvectors.at<double>(i, 1));
eigen_val[i] = pca_analysis.eigenvalues.at<double>(0, i);
*
// Draw the principal components
circle(img, cntr, 3, Scalar(255, 0, 255), 2);
Point p1 = cntr + 0.02 * Point(static_cast<int>(eigen_vecs[0].x * eigen_val[0]), static_cast<int>(eigen_vecs[0].y * eigen_val[0]));
Point p2 = cntr - 0.02 * Point(static_cast<int>(eigen_vecs[1].x * eigen_val[1]), static_cast<int>(eigen_vecs[1].y * eigen_val[1]));
drawAxis(img, cntr, p1, Scalar(0, 255, 0), 1);
drawAxis(img, cntr, p2, Scalar(255, 255, 0), 5);
double angle = atan2(eigen_vecs[0].y, eigen_vecs[0].x); // orientation in radians
return angle;
int main(int, char** argv)
// Load image
Mat src = imread("C:/Users/aydin/Desktop/c++/pictures/pca_test1.jpg");
//Mat src = imread(argv[1]);
// Check if image is loaded successfully
if (!src.data || src.empty())
cout << "Problem loading image!!!" << endl;
return EXIT_FAILURE;
imshow("src", src);
// Convert image to grayscale
Mat gray;
cvtColor(src, gray, COLOR_BGR2GRAY);
// Convert image to binary
Mat bw;
threshold(gray, bw, 50, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
// Find all the contours in the thresholded image
vector<Vec4i> hierarchy;
vector<vector<Point> > contours;
findContours(bw, contours, hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
for (size_t i = 0; i < contours.size(); ++i)
// Calculate the area of each contour
double area = contourArea(contours[i]);
// Ignore contours that are too small or too large
if (area < 1e2 || 1e5 < area) continue;
// Draw each contour only for visualisation purposes
drawContours(src, contours, static_cast<int>(i), Scalar(0, 0, 255), 2, 8, hierarchy, 0);
// Find the orientation of each shape
//getOrientation(contours[i], src);
imshow("output", src);
waitKey(0);
return 0;
【问题讨论】:
我尝试运行示例中的代码,它的输出符合预期。你的编译器和其他环境是什么? 我在 windows 10 上使用 opencv 3 和 visual studio 2015 。当我评论“getOrientation”功能时,它可以正常工作并显示带有计数器但没有方向的图像 尝试重新启动)我认为,问题出在您的环境中。此代码按预期工作。没有足够的信息可以帮助您。 【参考方案1】:不,这与环境无关;我不知道,你是如何让它工作的,但后来我看到了同样的错误here,他输入了正确的代码,说它有错误。但是将此代码与原始代码进行比较我在“for循环”中看到了一个我提到的问题
for (int i = 0; i < 2; ++i)
eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0),
pca_analysis.eigenvectors.at<double>(i, 1));
eigen_val[i] = pca_analysis.eigenvalues.at<double>(0,i);
,他将最后一个括号从 (0,i) 更改为 (i) 。我也是这样做的,但我不明白为什么,你能告诉我为什么吗?
【讨论】:
以上是关于OpenCV 3 中的 PCA 错误的主要内容,如果未能解决你的问题,请参考以下文章
在 OpenCV 中使用 PCA 进行降维,特征向量的维数错误
OpenCV 例程300篇234. 特征提取之主成分分析(PCA)