没有递归的置换算法?爪哇
Posted
技术标签:
【中文标题】没有递归的置换算法?爪哇【英文标题】:Permutation algorithm without recursion? Java 【发布时间】:2011-02-17 10:48:26 【问题描述】:我想得到一个数字的所有组合而没有任何重复。 像 0.1.2、0.2.1、1.2.0、1.0.2、2.0.1、2.1.0。 我试图找到一个简单的方案,但找不到。我为它画了一个图/树,这尖叫着使用递归。 但如果可能的话,我想在没有递归的情况下这样做。
有人可以帮我做吗?
【问题讨论】:
递归是解决这个问题的一种自然方式。为什么要不使用递归呢?任何明智的“非递归”解决方案最终都会使用单独的堆栈来模拟递归。 @Greg 可读性可能吗?很多人觉得递归很难理解——也许不使用递归会使意图更明确? @drelihan:需要一个更具可读性的非递归解决方案的示例来支持该断言。 @Greg:不说两者都更具可读性 - 只是暗示这可能是有人想要以非递归方式执行此操作的原因 我怀疑可以找到一些公式,它可以将排列元素的值作为计数的函数。像 f(seq,len,place)= (seq!place)%len ..(但当然不是,我还没有破解)。但我可以看到,能够以公式的方式制定独特排列模式的细节可能会非常有用。 【参考方案1】:您应该使用这样一个事实,即当您想要 N 个数字的所有排列时,就有 N!可能性。因此,每个数字 x 来自 1..N!编码这样的排列。这是一个迭代打印出所有排列的示例。
private static void printPermutationsIterative(String string)
int [] factorials = new int[string.length()+1];
factorials[0] = 1;
for (int i = 1; i<=string.length();i++)
factorials[i] = factorials[i-1] * i;
for (int i = 0; i < factorials[string.length()]; i++)
String onePermutation="";
String temp = string;
int positionCode = i;
for (int position = string.length(); position > 0 ;position--)
int selected = positionCode / factorials[position-1];
onePermutation += temp.charAt(selected);
positionCode = positionCode % factorials[position-1];
temp = temp.substring(0,selected) + temp.substring(selected+1);
System.out.println(onePermutation);
【讨论】:
如果我在答案中使用这个算法(转换为 javascript),我应该把它归于你吗?还是您使用了其他来源? 你可以归咎于我。 要了解这段代码在做什么,请参阅en.wikipedia.org/wiki/Factorial_number_system中的排列部分【参考方案2】:这是我一年前写的一个通用排列枚举器。它还可以产生“子排列”:
public class PermUtil <T>
private T[] arr;
private int[] permSwappings;
public PermUtil(T[] arr)
this(arr,arr.length);
public PermUtil(T[] arr, int permSize)
this.arr = arr.clone();
this.permSwappings = new int[permSize];
for(int i = 0;i < permSwappings.length;i++)
permSwappings[i] = i;
public T[] next()
if (arr == null)
return null;
T[] res = Arrays.copyOf(arr, permSwappings.length);
//Prepare next
int i = permSwappings.length-1;
while (i >= 0 && permSwappings[i] == arr.length - 1)
swap(i, permSwappings[i]); //Undo the swap represented by permSwappings[i]
permSwappings[i] = i;
i--;
if (i < 0)
arr = null;
else
int prev = permSwappings[i];
swap(i, prev);
int next = prev + 1;
permSwappings[i] = next;
swap(i, next);
return res;
private void swap(int i, int j)
T tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
我的算法背后的想法是,任何排列都可以表示为唯一交换命令序列。例如,对于 ,交换序列 012 将所有项目留在原地,而 122 开始时将索引 0 与索引 1 交换,然后将 1 与 2 交换,然后将 2 与 2 交换(即,将其保留在地方)。这导致了置换 BCA。
这种表示与排列表示同构(即一对一的关系),并且在遍历排列空间时很容易“增加”它。 4个项目,从0123(ABCD)开始,到3333(DABC)结束。
【讨论】:
【参考方案3】:一般来说,任何递归算法都可以通过使用堆栈或队列数据结构来简化为迭代算法。
对于这个特殊问题,查看 C++ STL 算法std::next_permutation
可能更有启发性。根据wordaligned.org 的 Thomas Guest 所说,基本实现如下所示:
template<typename Iter>
bool next_permutation(Iter first, Iter last)
if (first == last)
return false;
Iter i = first;
++i;
if (i == last)
return false;
i = last;
--i;
for(;;)
Iter ii = i;
--i;
if (*i < *ii)
Iter j = last;
while (!(*i < *--j))
std::iter_swap(i, j);
std::reverse(ii, last);
return true;
if (i == first)
std::reverse(first, last);
return false;
请注意,它不使用递归,并且相对简单地翻译成另一种类似 C 的语言,如 Java。您可能还想阅读std::iter_swap、std::reverse 和bidirectional iterators(此代码中Iter
的含义)。
【讨论】:
此处描述:en.wikipedia.org/wiki/… 它使用Knuths's L-algorithm【参考方案4】:编写递归排列很容易,但它需要从深度嵌套的循环中导出排列。 (这是一个有趣的练习。)我需要一个为字谜置换字符串的版本。我编写了一个实现Iterable<String>
的版本,因此它可以在foreach 循环中使用。通过更改构造函数和属性“array”的类型,它可以很容易地适应其他类型,例如int[]
,甚至是泛型类型<T[]>
。
import java.util.Iterator;
import java.util.NoSuchElementException;
/**
* An implicit immutable collection of all permutations of a string with an
* iterator over the permutations.<p> implements Iterable<String>
* @see #StringPermutation(String)
*/
public class StringPermutation implements Iterable<String>
// could implement Collection<String> but it's immutable, so most methods are essentially vacuous
protected final String string;
/**
* Creates an implicit Iterable collection of all permutations of a string
* @param string String to be permuted
* @see Iterable
* @see #iterator
*/
public StringPermutation(String string)
this.string = string;
/**
* Constructs and sequentially returns the permutation values
*/
@Override
public Iterator<String> iterator()
return new Iterator<String>()
char[] array = string.toCharArray();
int length = string.length();
int[] index = (length == 0) ? null : new int[length];
@Override
public boolean hasNext()
return index != null;
@Override
public String next()
if (index == null) throw new NoSuchElementException();
for (int i = 1; i < length; ++i)
char swap = array[i];
System.arraycopy(array, 0, array, 1, i);
array[0] = swap;
for (int j = 1 ; j < i; ++j)
index[j] = 0;
if (++index[i] <= i)
return new String(array);
index[i] = 0;
index = null;
return new String(array);
@Override
public void remove()
throw new UnsupportedOperationException();
;
【讨论】:
【参考方案5】:到目前为止,我看到的大多数示例要么太复杂,要么只使用字符串,要么使用交换,所以我想我会做一个迭代、直观、通用且无交换的示例。
public static <T> List<List<T>> permutations(List<T> es)
List<List<T>> permutations = new ArrayList<List<T>>();
if(es.isEmpty())
return permutations;
// We add the first element
permutations.add(new ArrayList<T>(Arrays.asList(es.get(0))));
// Then, for all elements e in es (except from the first)
for (int i = 1, len = es.size(); i < len; i++)
T e = es.get(i);
// We take remove each list l from 'permutations'
for (int j = permutations.size() - 1; j >= 0; j--)
List<T> l = permutations.remove(j);
// And adds a copy of l, with e inserted at index k for each position k in l
for (int k = l.size(); k >= 0; k--)
ArrayList<T> ts2 = new ArrayList<>(l);
ts2.add(k, e);
permutations.add(ts2);
return permutations;
示例:我们想要 [a,b,c] 的所有排列 我们添加 a 并得到 [a] // [b,c] 剩余 我们从列表中取出 a 并添加 [a,b] 和 [b,a] // [c] 剩余 我们删除 [b,a] 并插入 [b,a,c]、[b,c,a]、[c,b,a] 然后删除 [a,b] 并插入 [a,b, c], [a,c,b], [c,a,b]
【讨论】:
【参考方案6】:这是我基于实现here 和here 编写的通用和迭代置换、kpermutation 和组合生成器类。我的类将它们用作内部类。他们还实现了可迭代的接口。
List<String> objects = new ArrayList<String>();
objects.add("A");
objects.add("B");
objects.add("C");
Permutations<String> permutations = new Permutations<String>(objects);
for (List<String> permutation : permutations)
System.out.println(permutation);
Combinations<String> combinations = new Combinations<String>(objects, 2);
for (List<String> combination : combinations)
System.out.println(combination);
KPermutations<String> kPermutations = new KPermutations<String>(objects, 2);
for (List<String> kPermutation : kPermutations)
System.out.println(kPermutation);
组合类:
public class Combinations<T> implements Iterable<List<T>>
CombinationGenerator cGenerator;
T[] elements;
int[] indices;
public Combinations(List<T> list, int n)
cGenerator = new CombinationGenerator(list.size(), n);
elements = (T[]) list.toArray();
public Iterator<List<T>> iterator()
return new Iterator<List<T>>()
int pos = 0;
public boolean hasNext()
return cGenerator.hasMore();
public List<T> next()
if (!hasNext())
throw new NoSuchElementException();
indices = cGenerator.getNext();
List<T> combination = new ArrayList<T>();
for (int i = 0; i < indices.length; i++)
combination.add(elements[indices[i]]);
return combination;
public void remove()
throw new UnsupportedOperationException();
;
private final class CombinationGenerator
private int[] a;
private int n;
private int r;
private BigInteger numLeft;
private BigInteger total;
//------------
// Constructor
//------------
public CombinationGenerator(int n, int r)
if (n < 1)
throw new IllegalArgumentException("Set must have at least one element");
if (r > n)
throw new IllegalArgumentException("Subset length can not be greater than set length");
this.n = n;
this.r = r;
a = new int[r];
BigInteger nFact = getFactorial(n);
BigInteger rFact = getFactorial(r);
BigInteger nminusrFact = getFactorial(n - r);
total = nFact.divide(rFact.multiply(nminusrFact));
reset();
//------
// Reset
//------
public void reset()
for (int i = 0; i < a.length; i++)
a[i] = i;
numLeft = new BigInteger(total.toString());
//------------------------------------------------
// Return number of combinations not yet generated
//------------------------------------------------
public BigInteger getNumLeft()
return numLeft;
//-----------------------------
// Are there more combinations?
//-----------------------------
public boolean hasMore()
return numLeft.compareTo(BigInteger.ZERO) == 1;
//------------------------------------
// Return total number of combinations
//------------------------------------
public BigInteger getTotal()
return total;
//------------------
// Compute factorial
//------------------
private BigInteger getFactorial(int n)
BigInteger fact = BigInteger.ONE;
for (int i = n; i > 1; i--)
fact = fact.multiply(new BigInteger(Integer.toString(i)));
return fact;
//--------------------------------------------------------
// Generate next combination (algorithm from Rosen p. 286)
//--------------------------------------------------------
public int[] getNext()
if (numLeft.equals(total))
numLeft = numLeft.subtract(BigInteger.ONE);
return a;
int i = r - 1;
while (a[i] == n - r + i)
i--;
a[i] = a[i] + 1;
for (int j = i + 1; j < r; j++)
a[j] = a[i] + j - i;
numLeft = numLeft.subtract(BigInteger.ONE);
return a;
排列类:
public class Permutations<T> implements Iterable<List<T>>
PermutationGenerator pGenerator;
T[] elements;
int[] indices;
public Permutations(List<T> list)
pGenerator = new PermutationGenerator(list.size());
elements = (T[]) list.toArray();
public Iterator<List<T>> iterator()
return new Iterator<List<T>>()
int pos = 0;
public boolean hasNext()
return pGenerator.hasMore();
public List<T> next()
if (!hasNext())
throw new NoSuchElementException();
indices = pGenerator.getNext();
List<T> permutation = new ArrayList<T>();
for (int i = 0; i < indices.length; i++)
permutation.add(elements[indices[i]]);
return permutation;
public void remove()
throw new UnsupportedOperationException();
;
private final class PermutationGenerator
private int[] a;
private BigInteger numLeft;
private BigInteger total;
//-----------------------------------------------------------
// Constructor. WARNING: Don't make n too large.
// Recall that the number of permutations is n!
// which can be very large, even when n is as small as 20 --
// 20! = 2,432,902,008,176,640,000 and
// 21! is too big to fit into a Java long, which is
// why we use BigInteger instead.
//----------------------------------------------------------
public PermutationGenerator(int n)
if (n < 1)
throw new IllegalArgumentException("Set must have at least one element");
a = new int[n];
total = getFactorial(n);
reset();
//------
// Reset
//------
public void reset()
for (int i = 0; i < a.length; i++)
a[i] = i;
numLeft = new BigInteger(total.toString());
//------------------------------------------------
// Return number of permutations not yet generated
//------------------------------------------------
public BigInteger getNumLeft()
return numLeft;
//------------------------------------
// Return total number of permutations
//------------------------------------
public BigInteger getTotal()
return total;
//-----------------------------
// Are there more permutations?
//-----------------------------
public boolean hasMore()
return numLeft.compareTo(BigInteger.ZERO) == 1;
//------------------
// Compute factorial
//------------------
private BigInteger getFactorial(int n)
BigInteger fact = BigInteger.ONE;
for (int i = n; i > 1; i--)
fact = fact.multiply(new BigInteger(Integer.toString(i)));
return fact;
//--------------------------------------------------------
// Generate next permutation (algorithm from Rosen p. 284)
//--------------------------------------------------------
public int[] getNext()
if (numLeft.equals(total))
numLeft = numLeft.subtract(BigInteger.ONE);
return a;
int temp;
// Find largest index j with a[j] < a[j+1]
int j = a.length - 2;
while (a[j] > a[j + 1])
j--;
// Find index k such that a[k] is smallest integer
// greater than a[j] to the right of a[j]
int k = a.length - 1;
while (a[j] > a[k])
k--;
// Interchange a[j] and a[k]
temp = a[k];
a[k] = a[j];
a[j] = temp;
// Put tail end of permutation after jth position in increasing order
int r = a.length - 1;
int s = j + 1;
while (r > s)
temp = a[s];
a[s] = a[r];
a[r] = temp;
r--;
s++;
numLeft = numLeft.subtract(BigInteger.ONE);
return a;
以及实际使用 Permutations 和 Combinations 类的 KPermutations 类:
public class KPermutations<T> implements Iterable<List<T>>
Combinations<T> combinations;
public KPermutations(List<T> list, int k)
if (k<1)
throw new IllegalArgumentException("Subset length k must me at least 1");
combinations = new Combinations<T>(list, k);
public Iterator<List<T>> iterator()
return new Iterator<List<T>>()
Iterator<List<T>> it = combinations.iterator();
Permutations<T> permutations = new Permutations<T>(combinations.iterator().next());
// Has more combinations but no more permutation for current combination
public boolean hasNext()
if (combinations.iterator().hasNext() && !permutations.iterator().hasNext())
permutations = new Permutations<T>(combinations.iterator().next());
return true;
//Has more permutation for current combination
else if (permutations.iterator().hasNext())
return true;
// No more combination and permutation
return false;
public List<T> next()
if (!hasNext())
throw new NoSuchElementException();
return permutations.iterator().next();
public void remove()
throw new UnsupportedOperationException();
;
【讨论】:
【参考方案7】:这里我有a solution in scala,它可以从 java 中使用,但也可以 - 使用更多代码 - 在 Java 中实现,以允许对简化的 for 循环使用迭代器:
for (List<Integer> list: permutations)
doSomething (list);
为了允许简化的for循环,我们需要实现Iterable,这意味着我们必须提供一个返回Iterator的方法,它恰好是另一个接口,这意味着我们必须实现3个方法:hasNext() ;下一个 ();并删除();
import java.util.*;
class PermutationIterator <T> implements Iterator <List <T>>
private int current = 0;
private final List <T> lilio;
public final long last;
public PermutationIterator (final List <T> llo)
lilio = llo;
long product = 1;
for (long p = 1; p <= llo.size (); ++p)
product *= p;
last = product;
public boolean hasNext ()
return current != last;
public List <T> next ()
++current;
return get (current - 1, lilio);
public void remove ()
++current;
private long fac (long l)
for (long i = l - 1L; i > 1L; --i)
l *= i;
return l;
/**
new version, which produces permutations in increasing order:
*/
private List <T> get (final long code, final List <T> list)
if (list.isEmpty ())
return list;
else
int len = list.size (); // len = 4
long max = fac (len); // max = 24
long divisor = max / len; // divisor = 6
int i = (int) (code / divisor); // i = 2
List <T> second = new ArrayList <T> (list.size ());
second.addAll (list);
T el = second.remove (i);
List <T> tt = new ArrayList <T> ();
tt.add (el);
tt.addAll (get (code - divisor * i, second));
return tt;
public List <T> get (final int code)
return get (code, lilio);
class PermutationIterable <T> implements Iterable <List <T>>
private List <T> lilio;
public PermutationIterable (List <T> llo)
lilio = llo;
public Iterator <List <T>> iterator ()
return new PermutationIterator <T> (lilio);
private long invers (final List <T> pattern, final List <T> matcher)
if (pattern.isEmpty ())
return 0L;
T first = pattern.get (0);
int idx = matcher.indexOf (first);
long l = (pattern.size () - 1L) * idx;
pattern.remove (0);
matcher.remove (idx);
return l + invers (pattern, matcher);
/**
make a deep copy, since the called method will destroy the parameters
*/
public long invers (final List <T> lt)
List <T> copy = new ArrayList <T> (lilio.size ());
copy.addAll (lilio);
return invers (lt, copy);
class PermutationIteratorTest
public static List <Integer> genList (int... a)
List <Integer> li = new ArrayList <Integer> ();
for (int i: a)
li.add (i);
return li;
public static void main (String[] args)
List <Integer> il = new ArrayList <Integer> ();
// autoboxing, add '0' to 'z' as Character:
for (int c = 0; c < 3; ++c)
il.add (c);
PermutationIterable <Integer> pi = new PermutationIterable <Integer> (il);
for (List<Integer> li: pi)
show (li);
System.out.println ("-again-");
// do it a second time:
for (List <Integer> li: pi)
show (li);
// test the inverse:
System.out.println ("for (2,1,0) expecting 5 ?= " + pi.invers (genList (2, 1, 0)));
System.out.println ("for (2,0,1) expecting 4 ?= " + pi.invers (genList (2, 0, 1)));
System.out.println ("for (1,0,2) expecting 3 ?= " + pi.invers (genList (1, 2, 0)));
System.out.println ("for (1,2,0) expecting 2 ?= " + pi.invers (genList (1, 0, 2)));
System.out.println ("for (0,2,1) expecting 1 ?= " + pi.invers (genList (0, 2, 1)));
System.out.println ("for (0,1,2) expecting 0 ?= " + pi.invers (genList (0, 1, 2)));
Random r = new Random ();
PermutationIterator <Integer> pitor = (PermutationIterator <Integer>) pi.iterator ();
for (int i = 0; i < 10; ++i)
int rnd = r.nextInt ((int) pitor.last);
List <Integer> rli = pitor.get (rnd);
show (rli);
public static void show (List <?> lo)
System.out.print ("(");
for (Object o: lo)
System.out.print (o);
System.out.println (")");
PermutationIterator 包含额外的公共方法public List <T> get (final int code)
,如果您想按索引(例如随机)选择某个排列,这很方便。您知道大小(最后一个),因此可以按索引对有效范围进行排列。
PermutationIterable 包含一个方法“invers”,它会生成相反的结果:某个排列的索引。
在内部,invers 和 get 以递归方式工作,但并非所有排列都以递归方式产生,因此即使对于大排列,这也不应该成为问题。请注意,对于 21 个元素,您超过了 long 的大小,并且 20 步的递归根本不成问题。
【讨论】:
【参考方案8】:您可以使用Factoradics(您可以看到实现here)或生成所有排列的Knuth's L-Algorithm。下面是后者的实现:
public class Perm
public static void main(String... args)
final int N = 5;
int[] sequence = new int[N];
for (int i = 0; i < N; i++)
sequence[i] = i + 1;
printSequence(sequence);
permutations(sequence);
private static int factorial(int n)
int fact = 1;
for (int i = 1; i <= n; i++)
fact *= i;
return fact;
private static void swap(int[] elements, int i, int j)
int temp = elements[i];
elements[i] = elements[j];
elements[j] = temp;
/**
* Reverses the elements of an array (in place) from the start index to the end index
*/
private static void reverse(int[] array, int startIndex, int endIndex)
int size = endIndex + 1 - startIndex;
int limit = startIndex + size / 2;
for (int i = startIndex; i < limit; i++)
// swap(array, i, startIndex + (size - 1 - (i - startIndex)));
swap(array, i, 2 * startIndex + size - 1 - i);
private static void printSequence(int[] sequence)
for (int i = 0; i < sequence.length; i++)
System.out.printf("%d, ", sequence[i]);
System.out.println();
/**
* Implements the Knuth's L-Algorithm permutation algorithm
* modifying the collection in place
*/
private static void permutations(int[] sequence)
final int N = sequence.length;
// There are n! permutations, but the first permutation is the array without
// modifications, so the number of permutations is n! - 1
int numPermutations = factorial(N) - 1;
// For every possible permutation
for (int n = 0; n < numPermutations; n++)
// Iterate the array from right to left in search
// of the first couple of elements that are in ascending order
for (int i = N - 1; i >= 1; i--)
// If the elements i and i - 1 are in ascending order
if (sequence[i - 1] < sequence[i])
// Then the index "i - 1" becomes our pivot index
int pivotIndex = i - 1;
// Scan the elements at the right of the pivot (again, from right to left)
// in search of the first element that is bigger
// than the pivot and, if found, swap it
for (int j = N - 1; j > pivotIndex; j--)
if (sequence[j] > sequence[pivotIndex])
swap(sequence, j, pivotIndex);
break;
// Now reverse the elements from the right of the pivot index
// (this nice touch to the algorithm avoids the recursion)
reverse(sequence, pivotIndex + 1, N - 1);
break;
printSequence(sequence);
【讨论】:
【参考方案9】:IEnumerable<IEnumerable<int>> generatePermutations(int length)
if (length <= 0) throw new ArgumentException();
var resultCollection = new List<IEnumerable<int>> new [] 0 ;
for (var index = 1; index < length; index++)
var newResultCollection = new List<IEnumerable<int>>();
foreach (var result in resultCollection)
for (var insertIndex = index; insertIndex >= 0; insertIndex--)
var list = new List<int>(result);
list.Insert(insertIndex, index);
newResultCollection.Add(list);
resultCollection = newResultCollection;
return resultCollection;
【讨论】:
【参考方案10】:@Filip Nyugen 在 JS 中的解决方案,适合那些希望在 JS 中得到答案的人
function printPermutationsIterative(string)
const factorials = [];
factorials[0] = 1;
for (let i = 1; i <= string.length; i++)
factorials[i] = factorials[i - 1] * i;
for (let i = 0; i < factorials[string.length]; i++)
let onePermutation = "";
let temp = string;
let positionCode = i;
for (let position = string.length; position > 0; position--)
let selected = positionCode / factorials[position - 1];
onePermutation += temp.charAt(selected);
positionCode = positionCode % factorials[position - 1];
temp = temp.substring(0, selected) + temp.substring(selected + 1);
console.log(onePermutation);
【讨论】:
需要 Math.floor(positionCode / factorials[position - 1]) 在 JavaScript 中使用“整数”数学。【参考方案11】:这当然以前做过,一个解决方案是Bells Permutation Algorithm。 您可以找到解决方案here,您可以在其中找到 Prolog 中的递归解决方案和用 Pascal 编写的非递归贝尔置换算法。
将它们转换为 Java 留给读者作为练习。
【讨论】:
虽然此链接可能会回答问题,但最好在此处包含答案的基本部分并提供链接以供参考。如果链接页面发生更改,仅链接的答案可能会失效。 是的,我知道。但重要的信息是算法的名称,而不是代码。但我理解这个问题。【参考方案12】:这是一个简单的 Java 函数,用于打印所有可能的排列(包括较小的排列到空字符串“”)。如果您只需要打印相同长度的排列,只需在打印之前添加 if 语句。
这个想法与递归相同。但不是堆叠方法调用。我们使用数据结构(如本例中的列表)来堆叠排列。
import java.util.LinkedList;
import java.util.List;
public class Permutations
public void perm(String input)
List<String[]> buffer = new LinkedList<>();
buffer.add(new String[]input, "");
while (!buffer.isEmpty())
String[] perm = buffer.remove(0);
System.out.println(perm[1]);
for (int i = 0; i < perm[0].length(); i++)
buffer.add(new String[]perm[0].substring(0, i) + perm[0].substring(i + 1), perm[1] + perm[0].charAt(i));
【讨论】:
【参考方案13】:import java.io.*;
class Permutation
String w;
public void accept() throws IOException
BufferedReader ak=new BufferedReader(new InputStreamReader(System.in)); System.out.println("Enter a word"); w=ak.readLine();
public void permute()
int l,s,m,p,k,t,x,n,r;
s=m=0;p=t=k=1;
l=w.length();
for(x=1;x<=l;x++)
p*=x; s+=x; t*=10;
System.out.println("\n"+"The "+p+" possible permutations of the word are:"+"\n");
for(x=t/10;x
public boolean isUnique(int n)
int a[]=0,0,0,0,0,0,0,0,0,0;
int r;
while(n!=0)
r=n%10;
if(a[r]!=0 || r==0)
return false;
else
a[r]++;
n/=10;
return true;
【讨论】:
以上是关于没有递归的置换算法?爪哇的主要内容,如果未能解决你的问题,请参考以下文章