如何在庞大的 Pandas 数据框中拆分日、时、分和秒数据?
Posted
技术标签:
【中文标题】如何在庞大的 Pandas 数据框中拆分日、时、分和秒数据?【英文标题】:How to split day, hour, minute and second data in a huge Pandas data frame? 【发布时间】:2018-03-15 00:34:47 【问题描述】:我是 Python 新手,我正在为我正在学习的数据科学课程做一个项目。我有一个大的 csv 文件(大约 1.9 亿行,大约 7GB 的数据),我需要首先做一些数据准备。
完全免责声明:这里的数据来自Kaggle competition。
下面是来自 Jupyter Notebook 的带有标题的图片。虽然它读取full_data.head()
,但我使用 100,000 行示例只是为了测试代码。
最重要的列是click_time
。格式为:dd hh:mm:ss
。我想把它分成 4 个不同的列:天、小时、分钟和秒。我已经找到了一个可以很好地处理这个小文件的解决方案,但是在 10% 的真实数据上运行需要很长时间,更不用说在 100% 的真实数据上运行了(因为刚刚阅读了完整的 csv 现在是一个大问题)。
这里是:
# First I need to split the values
click = full_data['click_time']
del full_data['click_time']
click = click.str.replace(' ', ':')
click = click.str.split(':')
# Then I transform everything into integers. The last piece of code
# returns an array of lists, one for each line, and each list has 4
# elements. I couldn't figure out another way of making this conversion
click = click.apply(lambda x: list(map(int, x)))
# Now I transform everything into unidimensional arrays
day = np.zeros(len(click), dtype = 'uint8')
hour = np.zeros(len(click), dtype = 'uint8')
minute = np.zeros(len(click), dtype = 'uint8')
second = np.zeros(len(click), dtype = 'uint8')
for i in range(0, len(click)):
day[i] = click[i][0]
hour[i] = click[i][1]
minute[i] = click[i][2]
second[i] = click[i][3]
del click
# Transforming everything to a Pandas series
day = pd.Series(day, index = full_data.index, dtype = 'uint8')
hour = pd.Series(hour, index = full_data.index, dtype = 'uint8')
minute = pd.Series(minute, index = full_data.index, dtype = 'uint8')
second = pd.Series(second, index = full_data.index, dtype = 'uint8')
# Adding to data frame
full_data['day'] = day
del day
full_data['hour'] = hour
del hour
full_data['minute'] = minute
del minute
full_data['second'] = second
del second
结果还可以,这正是我想要的,但必须有更快的方法来做到这一点:
关于如何改进此实现的任何想法?如果有人对数据集感兴趣,这来自 test_sample.csv:https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection/data
提前非常感谢!!
EDIT 1:根据@COLDSPEED 请求,我提供full_data.head.to_dict()
的结果:
'app': 0: 12, 1: 25, 2: 12, 3: 13, 4: 12,
'channel': 0: 497, 1: 259, 2: 212, 3: 477, 4: 178,
'click_time': 0: '07 09:30:38',
1: '07 13:40:27',
2: '07 18:05:24',
3: '07 04:58:08',
4: '09 09:00:09',
'device': 0: 1, 1: 1, 2: 1, 3: 1, 4: 1,
'ip': 0: 87540, 1: 105560, 2: 101424, 3: 94584, 4: 68413,
'is_attributed': 0: 0, 1: 0, 2: 0, 3: 0, 4: 0,
'os': 0: 13, 1: 17, 2: 19, 3: 13, 4: 1
【问题讨论】:
请full_data.head().to_dict()
并在您的问题中发布数据,重现您的示例并不容易。
刚刚完成,谢谢!
谢谢,这很有帮助。
【参考方案1】:
转换为timedelta
并提取组件:
v = df.click_time.str.split()
df['days'] = v.str[0].astype(int)
df[['hours', 'minutes', 'seconds']] = (
pd.to_timedelta(v.str[-1]).dt.components.iloc[:, 1:4]
)
df
app channel click_time device ip is_attributed os days hours \
0 12 497 07 09:30:38 1 87540 0 13 7 9
1 25 259 07 13:40:27 1 105560 0 17 7 13
2 12 212 07 18:05:24 1 101424 0 19 7 18
3 13 477 07 04:58:08 1 94584 0 13 7 4
4 12 178 09 09:00:09 1 68413 0 1 9 9
minutes seconds
0 30 38
1 40 27
2 5 24
3 58 8
4 0 9
【讨论】:
成功了!虽然这比我想要的要多一点时间。运行超过 10% 的完整数据大约需要 5 分钟(MacBook Pro i5,8 GB RAM)。这是一个非常干净的实现,非常感谢!我所做的唯一修改是将数字类型指定为uint8
。它确实对内存使用产生了影响。再次感谢!【参考方案2】:
一种解决方法是先用空格分割,然后转换为datetime
对象,然后直接提取组件。
import pandas as pd
df = pd.DataFrame('click_time': ['07 09:30:38', '07 13:40:27', '07 18:05:24',
'07 04:58:08', '09 09:00:09', '09 01:22:13',
'09 01:17:58', '07 10:01:53', '08 09:35:17',
'08 12:35:26'])
df[['day', 'time']] = df['click_time'].str.split().apply(pd.Series)
df['datetime'] = pd.to_datetime(df['time'])
df['day'] = df['day'].astype(int)
df['hour'] = df['datetime'].dt.hour
df['minute'] = df['datetime'].dt.minute
df['second'] = df['datetime'].dt.second
df = df.drop(['time', 'datetime'], 1)
结果
click_time day hour minute second
0 07 09:30:38 7 9 30 38
1 07 13:40:27 7 13 40 27
2 07 18:05:24 7 18 5 24
3 07 04:58:08 7 4 58 8
4 09 09:00:09 9 9 0 9
5 09 01:22:13 9 1 22 13
6 09 01:17:58 9 1 17 58
7 07 10:01:53 7 10 1 53
8 08 09:35:17 8 9 35 17
9 08 12:35:26 8 12 35 26
【讨论】:
感谢您的回答!以上是关于如何在庞大的 Pandas 数据框中拆分日、时、分和秒数据?的主要内容,如果未能解决你的问题,请参考以下文章
将不同类型的 CSV 字符串加载到 Pandas 数据框中,拆分列,解析日期
Python、Pandas:80/20 随机拆分数据;当索引值“丢失”时如何循环?