使用 Huggingface TFTrainer 类微调模型时如何指定损失函数?
Posted
技术标签:
【中文标题】使用 Huggingface TFTrainer 类微调模型时如何指定损失函数?【英文标题】:How to specify the loss function when finetuning a model using the Huggingface TFTrainer Class? 【发布时间】:2021-05-23 21:48:20 【问题描述】:我遵循了下面给出的基本示例,来自:https://huggingface.co/transformers/training.html
from transformers import TFBertForSequenceClassification, TFTrainer, TFTrainingArguments
model = TFBertForSequenceClassification.from_pretrained("bert-large-uncased")
training_args = TFTrainingArguments(
output_dir='./results', # output directory
num_train_epochs=3, # total # of training epochs
per_device_train_batch_size=16, # batch size per device during training
per_device_eval_batch_size=64, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
)
trainer = TFTrainer(
model=model, # the instantiated ???? Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=tfds_train_dataset, # tensorflow_datasets training dataset
eval_dataset=tfds_test_dataset # tensorflow_datasets evaluation dataset
)
trainer.train()
但似乎没有办法为分类器指定损失函数。 For-ex,如果我对二元分类问题进行微调,我会使用
tf.keras.losses.BinaryCrossentropy(from_logits=True)
否则我会使用
tf.keras.losses.CategoricalCrossentropy(from_logits=True)
我的设置如下:
transformers==4.3.2
tensorflow==2.3.1
python==3.6.12
【问题讨论】:
【参考方案1】:创建一个继承自 PreTrainedModel 的类,然后在它的前向函数中创建您各自的损失函数。
【讨论】:
你的建议工作正常 :) 但我喜欢一些最低限度运行的代码,以便它对未来的新手(也许还有我)有说明。【参考方案2】:Trainer
具有使用 compute_loss
的能力
有关更多信息,您可以查看文档:https://huggingface.co/docs/transformers/main_classes/trainer#:~:text=passed%20at%20init.-,compute_loss,-%2D%20Computes%20the%20loss
这是一个如何自定义 Trainer 以使用加权损失的示例(当您有不平衡的训练集时很有用):
from torch import nn
from transformers import Trainer
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
labels = inputs.get("labels")
# forward pass
outputs = model(**inputs)
logits = outputs.get("logits")
# compute custom loss (suppose one has 3 labels with different weights)
loss_fct = nn.CrossEntropyLoss(weight=torch.tensor([1.0, 2.0, 3.0]))
loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))
return (loss, outputs) if return_outputs else loss
【讨论】:
以上是关于使用 Huggingface TFTrainer 类微调模型时如何指定损失函数?的主要内容,如果未能解决你的问题,请参考以下文章
使用 huggingface 库会报错:KeyError: 'logits'