访问由多层感知器构建的神经网络模型的权重的火炬错误
Posted
技术标签:
【中文标题】访问由多层感知器构建的神经网络模型的权重的火炬错误【英文标题】:torch error of accessing weights of a neural network model built by multiple layer perceptrons 【发布时间】:2021-03-04 21:57:47 【问题描述】:我正在尝试访问由torch 在databricks 上构建的神经网络模型的权重。
代码:
import torch
import torch.nn as nn
import numpy
class Feedforward(nn.Module):
def __init__(self, input_size, hidden_size):
super(Feedforward, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.fc1 = nn.Linear(self.input_size, self.hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(self.hidden_size, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
hidden = self.fc1(x)
relu = self.relu(hidden)
output = self.fc2(relu)
output = self.sigmoid(output)
return output
from sklearn.datasets import make_blobs
def blob_label(y, label, loc): # assign labels
target = numpy.copy(y)
for l in loc:
target[y == l] = label
return target
x_train, y_train = make_blobs(n_samples=40, n_features=2, cluster_std=1.5, shuffle=True)
x_train = torch.FloatTensor(x_train)
y_train = torch.FloatTensor(blob_label(y_train, 0, [0]))
y_train = torch.FloatTensor(blob_label(y_train, 1, [1,2,3]))
x_test, y_test = make_blobs(n_samples=10, n_features=2, cluster_std=1.5, shuffle=True)
x_test = torch.FloatTensor(x_test)
y_test = torch.FloatTensor(blob_label(y_test, 0, [0]))
y_test = torch.FloatTensor(blob_label(y_test, 1, [1,2,3]))
model = Feedforward(2, 10)
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
y_pred = model(x_test)
before_train = criterion(y_pred.squeeze(), y_test)
print('Test loss before training' , before_train.item())
model.train()
epoch = 20
for epoch in range(epoch):
optimizer.zero_grad()
# Forward pass
y_pred = model(x_train)
# Compute Loss
loss = criterion(y_pred.squeeze(), y_train)
print('Epoch : train loss: '.format(epoch, loss.item()))
# Backward pass
loss.backward()
optimizer.step()
model.eval()
y_pred = model(x_test)
after_train = criterion(y_pred.squeeze(), y_test)
print('Test loss after Training' , after_train.item())
代码运行良好。但是,当我尝试访问模型的权重时,我得到了错误:
model.weight # ModuleAttributeError: 'Feedforward' object has no attribute 'weight'
但是,如果我尝试过
model.fc1.weight
效果很好..
如何获取由多层感知器构建的模型的权重?
此帖Can't init the weights of my neural network PyTorch 对我不起作用。
谢谢
【问题讨论】:
【参考方案1】:因为有属性的是nn.Linear()
,而不是Feedforward
,试试改
class Feedforward(nn.Module):
def __init__(self, input_size, hidden_size):
super(Feedforward, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.fc1 = nn.Linear(self.input_size, self.hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(self.hidden_size, 1)
self.sigmoid = nn.Sigmoid()
到
class Feedforward(nn.Module):
def __init__(self, input_size, hidden_size):
super(nn.Linear, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.fc1 = nn.Linear(self.input_size, self.hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(self.hidden_size, 1)
self.sigmoid = nn.Sigmoid()
【讨论】:
您好,我已经尝试了您的建议。我收到错误“TypeError: super(type, obj): obj must be an instance or subtype of type”。谢谢以上是关于访问由多层感知器构建的神经网络模型的权重的火炬错误的主要内容,如果未能解决你的问题,请参考以下文章