使用 D&C/递归的最大子数组

Posted

技术标签:

【中文标题】使用 D&C/递归的最大子数组【英文标题】:Maximum sub array using D&C/Recursion 【发布时间】:2012-08-11 09:26:32 【问题描述】:

我想用展示 (n log n) 的算法来实现最大子数组问题:

找到最大的连续子数组,或数组中连续元素的最大总和。

假设:并非所有元素都是负数


我有一些可行的解决方案;问题在于重叠的中心数组,以及指定重叠子问题的适当索引,一些数组我得到了正确的答案,而另一些则没有。


只是为了比较和检查正确性,我实现了一个称为 Kadane 算法的解决方案 (我相信复杂度是 Omega(n))。

这是 Kandane 的算法(http://en.wikipedia.org/wiki/Maximum_subarray_problem):


 public static void Kadane(int array[]) 
        int max_ending_here = 0;
        for (int i = 0; i < array.length; i++) 
            max_ending_here = max_ending_here + array[i];
            max_so_far = Math.max(max_so_far, max_ending_here);
        
        System.out.println("Kadane(int array []): " + max_so_far);
    

我的递归实现,使用分治法来比较子数组的最大值,然后对具有最大值的子数组进行递归调用,直到递归结束

public static void findMaxSubArray(int[] array, int lowIndex, int highIndex) 

        int mid = 0;
        int arrayLength = 0;
        int maxEndingHere = 0;

        if (array == null) 
            throw new NullPointerException();
         else if 
                //base condition 
           (array.length < 2 || (highIndex==lowIndex)) 
            maxLowIndex = lowIndex;
            maxHighIndex = highIndex;
            System.out.println("findMaxSubArray(int[] array, int lowIndex, int highIndex)");
            System.out.println("global Max Range, low:" + maxLowIndex + " high: " + maxHighIndex);
            System.out.println("global Max Sum:" + globalMaximum);
         else 
            System.out.println();
            int lowMidMax = 0;
            int midHighMax = 0;
            int centerMax = 0;
            //array length is always the highest index +1 
            arrayLength = highIndex + 1;

            //if even number of elements in array 
            if (array.length % 2 == 0) 
                mid = arrayLength / 2;
                System.out.println("low: " + lowIndex + " mid: " + mid);
                for (int i = lowIndex; i < mid; i++) 
                    System.out.print(array[i] + ",");
                
                //calculate maximum contigous array encountered so far in low to mid indexes 
                for (int i = lowIndex; i < mid; i++) 
                    maxEndingHere = maxEndingHere + array[i];
                    if (maxEndingHere < 0) 
                        maxEndingHere = 0;
                    

                    if (globalMaximum < maxEndingHere) 
                        //new maximum found 
                        globalMaximum = lowMidMax = maxEndingHere;
                        lowIndex = i;
                    

                
                //end low mid calc 

                for (int i = mid; i <= highIndex; i++) 
                    System.out.print(array[i] + ",");
                
                System.out.println("mid: " + mid + " high: " + highIndex);
                //calculate maximum contigous array encountered so far in mid to high indexes 
                for (int i = mid; i <= highIndex; i++) 
                    maxEndingHere = maxEndingHere + array[i];
                    if (maxEndingHere < 0) 
                        maxEndingHere = 0;
                    

                    if (globalMaximum < maxEndingHere) 
                        //new maximum found 
                        globalMaximum = midHighMax = maxEndingHere;
                        mid = i;
                    

                
//end mid high calc
                //calculate maximum contigous array encountered so far in center array
                int lowCenter = mid -1;
                int highCenter = highIndex -1;

                System.out.println("lowCenter: " + lowCenter + " highCenter: " + highCenter);
                for (int i = lowCenter; i < highCenter; i++) 
                    System.out.print(array[i] + ",");
                
                //calculate maximum contigous array encountered so far in low to mid indexes 
                for (int i = lowCenter; i < highCenter; i++) 
                    maxEndingHere = maxEndingHere + array[i];
                    if (maxEndingHere < 0) 
                        maxEndingHere = 0;
                    

                    if (globalMaximum < maxEndingHere) 
                        //new max found
                        globalMaximum = centerMax = maxEndingHere;
                        lowCenter = i;

                    

                
                //end center calc 
                //determine which range contains the maximum sub array 
                //if lowMidMax <= midHighMax and centerMax
                if (lowMidMax >= midHighMax && lowMidMax >= centerMax) 
                    maxLowIndex = lowIndex;
                    maxHighIndex = mid;
                    //recursive call
                    findMaxSubArray(array, lowIndex, mid);
                
                if (midHighMax >= lowMidMax && midHighMax >= centerMax) 
                    maxLowIndex = mid;
                    maxHighIndex = highIndex;
                    //recursive call
                    findMaxSubArray(array, mid, highIndex);
                
                if (centerMax >= midHighMax && centerMax >= lowMidMax) 
                    maxLowIndex = lowCenter;
                    maxHighIndex = highCenter;
                    //recursive call
                    findMaxSubArray(array, lowCenter, highCenter);
                

            //end if even parent array 
            //else if uneven array 
            else 
                mid = (int) Math.floor(arrayLength / 2);
                System.out.println("low: " + lowIndex + " mid: " + mid);
                for (int i = lowIndex; i < mid; i++) 
                    System.out.print(array[i] + ",");
                
                //calculate maximum contigous array encountered so far in low to mid indexes 
                for (int i = lowIndex; i < mid; i++) 
                    maxEndingHere = maxEndingHere + array[i];
                    if (maxEndingHere < 0) 
                        maxEndingHere = 0;
                    

                    if (globalMaximum < maxEndingHere) 
                        //new maximum found 
                        globalMaximum = lowMidMax = maxEndingHere;
                        lowIndex = i;
                    

                
                //end low mid calc
                System.out.println("mid+1: " + (mid + 1) + " high: " + highIndex);
                for (int i = mid + 1; i <= highIndex; i++) 
                    System.out.print(array[i] + ",");
                
                //calculate maximum contigous array encountered so far in mid to high indexes 
                for (int i = mid + 1; i <= highIndex; i++) 
                    maxEndingHere = maxEndingHere + array[i];
                    if (maxEndingHere < 0) 
                        maxEndingHere = 0;
                    

                    if (globalMaximum < maxEndingHere) 
                        //new maximum found 
                        globalMaximum = midHighMax = maxEndingHere;
                        mid = i;
                    

                
                //end mid high calc
                //calculate maximum contigous array encountered so far in center array
                int lowCenter =  mid;
                int highCenter = highIndex -1;

                System.out.println("lowCenter: " + lowCenter + " highCenter: " + highCenter);
                for (int i = lowCenter; i < highCenter; i++) 
                    System.out.print(array[i] + ",");
                
                //calculate maximum contigous array encountered so far in low to mid indexes 
                for (int i = lowCenter; i < highCenter; i++) 
                    maxEndingHere = maxEndingHere + array[i];
                    if (maxEndingHere < 0) 
                        maxEndingHere = 0;
                    

                    if (globalMaximum < maxEndingHere) 
                        //new max
                        globalMaximum = centerMax = maxEndingHere;
                        lowCenter = i;
                    

                
                //end center calc 

                //determine which range contains the maximum sub array 
                //if lowMidMax <= midHighMax and centerMax
                  if (lowMidMax >= midHighMax && lowMidMax >= centerMax) 
                    maxLowIndex = lowIndex;
                    maxHighIndex = mid;
                    //recursive call
                    findMaxSubArray(array, lowIndex, mid);
                
                if (midHighMax >= lowMidMax && midHighMax >= centerMax) 
                    maxLowIndex = mid;
                    maxHighIndex = highIndex;
                    //recursive call
                    findMaxSubArray(array, mid, highIndex);
                
                if (centerMax >= midHighMax && centerMax >= lowMidMax) 
                    maxLowIndex = lowCenter;
                    maxHighIndex = highCenter;
                    //recursive call
                    findMaxSubArray(array, lowCenter, highCenter);
                


            //end odd parent array length 
        //end outer else array is ok to computed 

    //end method

结果:使用数组 subArrayProblem1 = 1, 2, 3, 4, 5, 6, 7, 8;

Kadane(int array []): 36 低:0 中:4 1,2,3,4,5,6,7,8,中:4 高:7 低中心:6 高中心:6

findMaxSubArray(int[] 数组, int lowIndex, int highIndex) 全局最大范围,低:7 高:7 全局最大总和:36 构建成功(总时间:0 秒)

问题虽然与 Kadane 相比全局最大总和是正确的,但低指数和高指数范围反映了最后一次递归调用。

结果:使用数组 subArrayProblem = 100, 113, 110, 85, 105, 102, 86, 63, 81, 101, 94, 106, 101, 79, 94, 90, 97;

Kadane(int 数组 []): 1607 低:0 中:8 100,113,110,85,105,102,86,63,中+1:9 高:16 101,94,106,101,79,94,90,97,lowCenter: 16 highCenter: 15

findMaxSubArray(int[] 数组, int lowIndex, int highIndex) 全局最大范围,低:16 高:16 全局最大总和:1526

全局最大值不正确,注意区别其实是1个元素,也就是第81个元素

【问题讨论】:

【参考方案1】:

一种更简洁的方法来找到最大和的子数组(D/C 递归方式):

// A Divide and Conquer based Java solution
// To find a subarray with the maximum sum

import java.util.Arrays;
import java.util.Scanner;

class MaxSubArray 

    private static Result maxCrossingSum(int arr[], int l, int m, int h) 

        int sum = 0;
        int maxLeft = 0;
        int leftSum = Integer.MIN_VALUE;
        for (int i = m; i >= l; i--) 
            sum = sum + arr[i];
            if (sum > leftSum) 
                leftSum = sum;
                maxLeft = i;
            
        

        sum = 0;
        int rightSum = Integer.MIN_VALUE;
        int maxRight = arr.length - 1;
        for (int i = m + 1; i <= h; i++) 
            sum = sum + arr[i];
            if (sum > rightSum) 
                rightSum = sum;
                maxRight = i;
            
        

        return new Result(maxLeft, maxRight, leftSum + rightSum);
    

    private static Result maxSubArray(int[] A, int low, int high) 

        if (low == high) 
            return new Result(low, high, A[low]);
        

        int mid = (low + high) / 2;

        Result leftSubArray = maxSubArray(A, low, mid);
        Result rightSubArray = maxSubArray(A, mid + 1, high);
        Result maxCrossingSubArray = maxCrossingSum(A, low, mid, high);

        int leftSum = leftSubArray.sum;
        int rightSum = rightSubArray.sum;
        int crossSum = maxCrossingSubArray.sum;

        if (leftSum > rightSum && leftSum > crossSum) 
            return new Result(leftSubArray.low, leftSubArray.high, leftSubArray.sum);
         else if (rightSum > leftSum && rightSum > crossSum) 
            return new Result(rightSubArray.low, rightSubArray.high, rightSubArray.sum);
         else 
            return new Result(maxCrossingSubArray.low, maxCrossingSubArray.high,
                maxCrossingSubArray.sum);
        
    

    public static class Result 

        public int low;
        public int high;
        public int sum;
        public Result(int low, int high, int sum) 
            this.low = low;
            this.high = high;
            this.sum = sum;
        

    

    /* Driver program to test maxSubArray */
    public static Result maxSubArray(int[] arr) 
        return maxSubArray(arr, 0, arr.length - 1);
    

    public static void main(String[] args) 

        Scanner sc = new Scanner(System.in);
        String[] arrString = sc.nextLine().split(" ");

        int n = arrString.length;

        int[] arr = new int[n];
        for (int i = 0; i < n; i++) 
            arr[i] = Integer.parseInt(arrString[i]);
        

        Result result = maxSubArray(arr);

        int[] subArray = new int[result.high - result.low + 1];
        int j = 0;
        for (int i = result.low; i <= result.high; i++) 
            subArray[j++] = arr[i];
        

        System.out.println(Arrays.toString(subArray));
        System.out.println("Sum : " + result.sum);
    

【讨论】:

【参考方案2】:

1. Kadane 算法的实现是错误的,它会在带有一些负数的数组上失败。 正确的应该是这样的:

 public static void Kadane(int array[]) 
        int max_ending_here = 0;
        for (int i = 0; i < array.length; i++) 
            max_ending_here = Math.max(array[i], max_ending_here + array[i]);
            max_so_far = Math.max(max_so_far, max_ending_here);
        
        System.out.println("Kadane(int array []): " + max_so_far);
    

您的代码中有很多错误,例如:

2.maxEndingHere 在计算答案之前应初始化为 0:

[lowIndex,mid)
[mid, highIndex]
[lowCenter, highCenter]

现在它只在第一次迭代之前被初始化。

3.lowCenter应该初始化为lowIndex

4.程序太长太复杂了……不知道有没有漏掉什么bug……

【讨论】:

关于 Kandane 的负数算法你绝对正确,我要清理我的 coe 并发布最大子数组的 D&C 解决方案的正确答案【参考方案3】:

解决方案非常简单,pv 是一个变量,它向我们展示了从 k 其中 0

/**
 * @author : Yash M. Sawant
 */




#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define MAXLENGTH 17
#define MINVALUE -999



int main() 
    int i;

    int s[MAXLENGTH]; s[0] = 0;
    int c[MAXLENGTH] = 0, 13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7;
    int pv = 0, p = -1, tp = -1;
    for(i = 1 ; i < MAXLENGTH ; i ++) 
        printf("%4d ", c[i]);
        if(s[i - 1] < pv + c[i]) 
            s[i] = pv + c[i];
            pv = pv + c[i];
            if(tp > p) 
                p = tp;
            
         else 
            s[i] = s[i - 1];
            pv = pv + c[i];
            if(pv < 0) 
                pv = 0; tp = i;
            
        
    
    printf("\n");
    for(i = 0 ; i < MAXLENGTH ; i ++) 
        printf("%4d ", s[i]);
    
    printf("\n");
    printf("Max Sub Array = %d and Starts at %d ", s[MAXLENGTH - 1], p);
    return 0;


【讨论】:

以上是关于使用 D&C/递归的最大子数组的主要内容,如果未能解决你的问题,请参考以下文章

最大子数组问题的几种解法

这种在连续子数组中找到最大和的递归算法有啥优势吗?

递归最大子数组未返回正确值

牛客网:连续子数组的最大和(动态递归解法)

分治法解决最大子数组问题

分治策略   最大子数组问题