使用 D&C/递归的最大子数组
Posted
技术标签:
【中文标题】使用 D&C/递归的最大子数组【英文标题】:Maximum sub array using D&C/Recursion 【发布时间】:2012-08-11 09:26:32 【问题描述】:我想用展示 (n log n) 的算法来实现最大子数组问题:
找到最大的连续子数组,或数组中连续元素的最大总和。
假设:并非所有元素都是负数
我有一些可行的解决方案;问题在于重叠的中心数组,以及指定重叠子问题的适当索引,一些数组我得到了正确的答案,而另一些则没有。
只是为了比较和检查正确性,我实现了一个称为 Kadane 算法的解决方案 (我相信复杂度是 Omega(n))。
这是 Kandane 的算法(http://en.wikipedia.org/wiki/Maximum_subarray_problem):
public static void Kadane(int array[])
int max_ending_here = 0;
for (int i = 0; i < array.length; i++)
max_ending_here = max_ending_here + array[i];
max_so_far = Math.max(max_so_far, max_ending_here);
System.out.println("Kadane(int array []): " + max_so_far);
我的递归实现,使用分治法来比较子数组的最大值,然后对具有最大值的子数组进行递归调用,直到递归结束
public static void findMaxSubArray(int[] array, int lowIndex, int highIndex)
int mid = 0;
int arrayLength = 0;
int maxEndingHere = 0;
if (array == null)
throw new NullPointerException();
else if
//base condition
(array.length < 2 || (highIndex==lowIndex))
maxLowIndex = lowIndex;
maxHighIndex = highIndex;
System.out.println("findMaxSubArray(int[] array, int lowIndex, int highIndex)");
System.out.println("global Max Range, low:" + maxLowIndex + " high: " + maxHighIndex);
System.out.println("global Max Sum:" + globalMaximum);
else
System.out.println();
int lowMidMax = 0;
int midHighMax = 0;
int centerMax = 0;
//array length is always the highest index +1
arrayLength = highIndex + 1;
//if even number of elements in array
if (array.length % 2 == 0)
mid = arrayLength / 2;
System.out.println("low: " + lowIndex + " mid: " + mid);
for (int i = lowIndex; i < mid; i++)
System.out.print(array[i] + ",");
//calculate maximum contigous array encountered so far in low to mid indexes
for (int i = lowIndex; i < mid; i++)
maxEndingHere = maxEndingHere + array[i];
if (maxEndingHere < 0)
maxEndingHere = 0;
if (globalMaximum < maxEndingHere)
//new maximum found
globalMaximum = lowMidMax = maxEndingHere;
lowIndex = i;
//end low mid calc
for (int i = mid; i <= highIndex; i++)
System.out.print(array[i] + ",");
System.out.println("mid: " + mid + " high: " + highIndex);
//calculate maximum contigous array encountered so far in mid to high indexes
for (int i = mid; i <= highIndex; i++)
maxEndingHere = maxEndingHere + array[i];
if (maxEndingHere < 0)
maxEndingHere = 0;
if (globalMaximum < maxEndingHere)
//new maximum found
globalMaximum = midHighMax = maxEndingHere;
mid = i;
//end mid high calc
//calculate maximum contigous array encountered so far in center array
int lowCenter = mid -1;
int highCenter = highIndex -1;
System.out.println("lowCenter: " + lowCenter + " highCenter: " + highCenter);
for (int i = lowCenter; i < highCenter; i++)
System.out.print(array[i] + ",");
//calculate maximum contigous array encountered so far in low to mid indexes
for (int i = lowCenter; i < highCenter; i++)
maxEndingHere = maxEndingHere + array[i];
if (maxEndingHere < 0)
maxEndingHere = 0;
if (globalMaximum < maxEndingHere)
//new max found
globalMaximum = centerMax = maxEndingHere;
lowCenter = i;
//end center calc
//determine which range contains the maximum sub array
//if lowMidMax <= midHighMax and centerMax
if (lowMidMax >= midHighMax && lowMidMax >= centerMax)
maxLowIndex = lowIndex;
maxHighIndex = mid;
//recursive call
findMaxSubArray(array, lowIndex, mid);
if (midHighMax >= lowMidMax && midHighMax >= centerMax)
maxLowIndex = mid;
maxHighIndex = highIndex;
//recursive call
findMaxSubArray(array, mid, highIndex);
if (centerMax >= midHighMax && centerMax >= lowMidMax)
maxLowIndex = lowCenter;
maxHighIndex = highCenter;
//recursive call
findMaxSubArray(array, lowCenter, highCenter);
//end if even parent array
//else if uneven array
else
mid = (int) Math.floor(arrayLength / 2);
System.out.println("low: " + lowIndex + " mid: " + mid);
for (int i = lowIndex; i < mid; i++)
System.out.print(array[i] + ",");
//calculate maximum contigous array encountered so far in low to mid indexes
for (int i = lowIndex; i < mid; i++)
maxEndingHere = maxEndingHere + array[i];
if (maxEndingHere < 0)
maxEndingHere = 0;
if (globalMaximum < maxEndingHere)
//new maximum found
globalMaximum = lowMidMax = maxEndingHere;
lowIndex = i;
//end low mid calc
System.out.println("mid+1: " + (mid + 1) + " high: " + highIndex);
for (int i = mid + 1; i <= highIndex; i++)
System.out.print(array[i] + ",");
//calculate maximum contigous array encountered so far in mid to high indexes
for (int i = mid + 1; i <= highIndex; i++)
maxEndingHere = maxEndingHere + array[i];
if (maxEndingHere < 0)
maxEndingHere = 0;
if (globalMaximum < maxEndingHere)
//new maximum found
globalMaximum = midHighMax = maxEndingHere;
mid = i;
//end mid high calc
//calculate maximum contigous array encountered so far in center array
int lowCenter = mid;
int highCenter = highIndex -1;
System.out.println("lowCenter: " + lowCenter + " highCenter: " + highCenter);
for (int i = lowCenter; i < highCenter; i++)
System.out.print(array[i] + ",");
//calculate maximum contigous array encountered so far in low to mid indexes
for (int i = lowCenter; i < highCenter; i++)
maxEndingHere = maxEndingHere + array[i];
if (maxEndingHere < 0)
maxEndingHere = 0;
if (globalMaximum < maxEndingHere)
//new max
globalMaximum = centerMax = maxEndingHere;
lowCenter = i;
//end center calc
//determine which range contains the maximum sub array
//if lowMidMax <= midHighMax and centerMax
if (lowMidMax >= midHighMax && lowMidMax >= centerMax)
maxLowIndex = lowIndex;
maxHighIndex = mid;
//recursive call
findMaxSubArray(array, lowIndex, mid);
if (midHighMax >= lowMidMax && midHighMax >= centerMax)
maxLowIndex = mid;
maxHighIndex = highIndex;
//recursive call
findMaxSubArray(array, mid, highIndex);
if (centerMax >= midHighMax && centerMax >= lowMidMax)
maxLowIndex = lowCenter;
maxHighIndex = highCenter;
//recursive call
findMaxSubArray(array, lowCenter, highCenter);
//end odd parent array length
//end outer else array is ok to computed
//end method
结果:使用数组 subArrayProblem1 = 1, 2, 3, 4, 5, 6, 7, 8;
Kadane(int array []): 36 低:0 中:4 1,2,3,4,5,6,7,8,中:4 高:7 低中心:6 高中心:6
findMaxSubArray(int[] 数组, int lowIndex, int highIndex) 全局最大范围,低:7 高:7 全局最大总和:36 构建成功(总时间:0 秒)
问题虽然与 Kadane 相比全局最大总和是正确的,但低指数和高指数范围反映了最后一次递归调用。
结果:使用数组 subArrayProblem = 100, 113, 110, 85, 105, 102, 86, 63, 81, 101, 94, 106, 101, 79, 94, 90, 97;
Kadane(int 数组 []): 1607 低:0 中:8 100,113,110,85,105,102,86,63,中+1:9 高:16 101,94,106,101,79,94,90,97,lowCenter: 16 highCenter: 15
findMaxSubArray(int[] 数组, int lowIndex, int highIndex) 全局最大范围,低:16 高:16 全局最大总和:1526
全局最大值不正确,注意区别其实是1个元素,也就是第81个元素
【问题讨论】:
【参考方案1】:一种更简洁的方法来找到最大和的子数组(D/C 递归方式):
// A Divide and Conquer based Java solution
// To find a subarray with the maximum sum
import java.util.Arrays;
import java.util.Scanner;
class MaxSubArray
private static Result maxCrossingSum(int arr[], int l, int m, int h)
int sum = 0;
int maxLeft = 0;
int leftSum = Integer.MIN_VALUE;
for (int i = m; i >= l; i--)
sum = sum + arr[i];
if (sum > leftSum)
leftSum = sum;
maxLeft = i;
sum = 0;
int rightSum = Integer.MIN_VALUE;
int maxRight = arr.length - 1;
for (int i = m + 1; i <= h; i++)
sum = sum + arr[i];
if (sum > rightSum)
rightSum = sum;
maxRight = i;
return new Result(maxLeft, maxRight, leftSum + rightSum);
private static Result maxSubArray(int[] A, int low, int high)
if (low == high)
return new Result(low, high, A[low]);
int mid = (low + high) / 2;
Result leftSubArray = maxSubArray(A, low, mid);
Result rightSubArray = maxSubArray(A, mid + 1, high);
Result maxCrossingSubArray = maxCrossingSum(A, low, mid, high);
int leftSum = leftSubArray.sum;
int rightSum = rightSubArray.sum;
int crossSum = maxCrossingSubArray.sum;
if (leftSum > rightSum && leftSum > crossSum)
return new Result(leftSubArray.low, leftSubArray.high, leftSubArray.sum);
else if (rightSum > leftSum && rightSum > crossSum)
return new Result(rightSubArray.low, rightSubArray.high, rightSubArray.sum);
else
return new Result(maxCrossingSubArray.low, maxCrossingSubArray.high,
maxCrossingSubArray.sum);
public static class Result
public int low;
public int high;
public int sum;
public Result(int low, int high, int sum)
this.low = low;
this.high = high;
this.sum = sum;
/* Driver program to test maxSubArray */
public static Result maxSubArray(int[] arr)
return maxSubArray(arr, 0, arr.length - 1);
public static void main(String[] args)
Scanner sc = new Scanner(System.in);
String[] arrString = sc.nextLine().split(" ");
int n = arrString.length;
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = Integer.parseInt(arrString[i]);
Result result = maxSubArray(arr);
int[] subArray = new int[result.high - result.low + 1];
int j = 0;
for (int i = result.low; i <= result.high; i++)
subArray[j++] = arr[i];
System.out.println(Arrays.toString(subArray));
System.out.println("Sum : " + result.sum);
【讨论】:
【参考方案2】:1. Kadane 算法的实现是错误的,它会在带有一些负数的数组上失败。 正确的应该是这样的:
public static void Kadane(int array[])
int max_ending_here = 0;
for (int i = 0; i < array.length; i++)
max_ending_here = Math.max(array[i], max_ending_here + array[i]);
max_so_far = Math.max(max_so_far, max_ending_here);
System.out.println("Kadane(int array []): " + max_so_far);
您的代码中有很多错误,例如:
2.maxEndingHere
在计算答案之前应初始化为 0:
[lowIndex,mid)
[mid, highIndex]
[lowCenter, highCenter]
现在它只在第一次迭代之前被初始化。
3.lowCenter
应该初始化为lowIndex
4.程序太长太复杂了……不知道有没有漏掉什么bug……
【讨论】:
关于 Kandane 的负数算法你绝对正确,我要清理我的 coe 并发布最大子数组的 D&C 解决方案的正确答案【参考方案3】:解决方案非常简单,pv
是一个变量,它向我们展示了从 k 其中 0
/**
* @author : Yash M. Sawant
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define MAXLENGTH 17
#define MINVALUE -999
int main()
int i;
int s[MAXLENGTH]; s[0] = 0;
int c[MAXLENGTH] = 0, 13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7;
int pv = 0, p = -1, tp = -1;
for(i = 1 ; i < MAXLENGTH ; i ++)
printf("%4d ", c[i]);
if(s[i - 1] < pv + c[i])
s[i] = pv + c[i];
pv = pv + c[i];
if(tp > p)
p = tp;
else
s[i] = s[i - 1];
pv = pv + c[i];
if(pv < 0)
pv = 0; tp = i;
printf("\n");
for(i = 0 ; i < MAXLENGTH ; i ++)
printf("%4d ", s[i]);
printf("\n");
printf("Max Sub Array = %d and Starts at %d ", s[MAXLENGTH - 1], p);
return 0;
【讨论】:
以上是关于使用 D&C/递归的最大子数组的主要内容,如果未能解决你的问题,请参考以下文章