亚马逊 AWS 和 S3 实例的语义分割
Posted
技术标签:
【中文标题】亚马逊 AWS 和 S3 实例的语义分割【英文标题】:Semantic segmentation with amazon AWS and S3 instance 【发布时间】:2019-11-23 10:50:29 【问题描述】:这可能是一个简单的问题,但我现在被困了一段时间。 我想在亚马逊 AWS 上训练 FCN。为此,我想将此示例中使用的过程 (https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/semantic_segmentation_pascalvoc/semantic_segmentation_pascalvoc.ipynb) 与我自己的数据集一起使用。
与该过程相比,我将我的训练和注释图像(如 .png)保存在一个 S3 存储桶中,其中包含四个文件夹(Training、TrainingAnnotation、Validation、ValidationAnnotation)。Training 和 Annotation 文件夹中的文件相同名字。
我用以下代码训练了我的模型:
%%time
import sagemaker
from sagemaker import get_execution_role
role = get_execution_role()
print(role)
bucket = sess.default_bucket()
prefix = 'semantic-segmentation'
print(bucket)
from sagemaker.amazon.amazon_estimator import get_image_uri
training_image = get_image_uri(sess.boto_region_name, 'semantic-segmentation', repo_version="latest")
print (training_image)
s3_output_location = 's3:////output'.format(bucket, prefix)
print(s3_output_location)
# Create the sagemaker estimator object.
ss_model = sagemaker.estimator.Estimator(training_image,
role,
train_instance_count = 1,
train_instance_type = 'ml.p2.xlarge',
train_volume_size = 50,
train_max_run = 360000,
output_path = s3_output_location,
base_job_name = 'ss-notebook-demo',
sagemaker_session = sess)
num_training_samples=5400
# Setup hyperparameters
ss_model.set_hyperparameters(backbone='resnet-50',
algorithm='fcn',
use_pretrained_model='True',
crop_size=248, .
num_classes=4,
epochs=10,
learning_rate=0.0001,
optimizer='rmsprop', 'adam', 'rmsprop', 'nag', 'adagrad'.
lr_scheduler='poly', 'cosine' and 'step'.
mini_batch_size=16,
validation_mini_batch_size=16,
early_stopping=True,
early_stopping_patience=2,
early_stopping_min_epochs=10,
num_training_samples=num_training_samples)
# Create full bucket names
bucket1 = 'imagelabel1'
train_channel = 'Training'
validation_channel = 'Validation'
train_annotation_channel = 'TrainingAnnotation'
validation_annotation_channel = 'ValidataionAnnotation'
s3_train_data = 's3:///'.format(bucket1, train_channel)
s3_validation_data = 's3:///'.format(bucket1, validation_channel)
s3_train_annotation = 's3:///'.format(bucket1, train_annotation_channel)
s3_validation_annotation = 's3:///'.format(bucket1, validation_annotation_channel)
distribution = 'FullyReplicated'
# Create sagemaker s3_input objects
train_data = sagemaker.session.s3_input(s3_train_data, distribution=distribution,
content_type='image/png', s3_data_type='S3Prefix')
validation_data = sagemaker.session.s3_input(s3_validation_data, distribution=distribution,
content_type='image/png', s3_data_type='S3Prefix')
train_annotation = sagemaker.session.s3_input(s3_train_annotation, distribution=distribution,
content_type='image/png', s3_data_type='S3Prefix')
validation_annotation = sagemaker.session.s3_input(s3_validation_annotation, distribution=distribution,
content_type='image/png', s3_data_type='S3Prefix')
data_channels = 'train': train_data,
'validation': validation_data,
'train_annotation': train_annotation,
'validation_annotation':validation_annotation
s3://imagelabel1/Training
ss_model.fit(inputs=data_channels, logs=True)
错误信息是:
ValueError:训练作业 ss-notebook-demo-2019-07-15-06-42-25-784 出错:失败原因:ClientError:训练通道为空。
有人知道本准则有什么问题吗?
谢谢
西蒙
【问题讨论】:
【参考方案1】:您的文件夹层次结构似乎没有使用正确的名称。根据文档 (https://docs.aws.amazon.com/sagemaker/latest/dg/semantic-segmentation.html#semantic-segmentation-inputoutput),它应该看起来像:
s3://bucket_name
|
|- train
|
| - 0000.jpg
| - coffee.jpg
|- validation
|
| - 00a0.jpg
| - bananna.jpg
|- train_annotation
|
| - 0000.png
| - coffee.png
|- validation_annotation
|
| - 00a0.png
| - bananna.png
|- label_map
| - train_label_map.json
| - validation_label_map.json
修复这些前缀应该可以解决您的问题:
train_channel = 'Training'
validation_channel = 'Validation'
train_annotation_channel = 'TrainingAnnotation'
validation_annotation_channel = 'ValidataionAnnotation'
【讨论】:
以上是关于亚马逊 AWS 和 S3 实例的语义分割的主要内容,如果未能解决你的问题,请参考以下文章
MaskLab-实例分割(使用语义分割和方向特征精细化目标检测)