不同的总和和分组依据
Posted
技术标签:
【中文标题】不同的总和和分组依据【英文标题】:Distinct Sum and Group by 【发布时间】:2020-04-21 17:31:02 【问题描述】:我有一个数据集 [附加示例],我想从中创建 2 个表;
+------+------------+-------+-------+-------+--------+
| corp | product | data | Group | sales | market |
+------+------------+-------+-------+-------+--------+
| A | Eli | 43831 | A | 100 | I |
| A | Eli | 43831 | B | 100 | I |
| B | Sut | 43831 | A | 80 | I |
| A | Api | 43831 | C | 50 | C or D |
| A | Api | 43831 | D | 50 | C or D |
| B | Konkurent2 | 43831 | C | 40 | C or D |
+------+------------+-------+-------+-------+--------+
1st - 按市场求和(销售额)并排除重复的行,所以我想在特定日期范围(数据列)中得到每个市场的销售额,但排除重复的 - 我有它们,因为 1 个产品可以超过1组
所以第一个表,例如,对于 MRCC I,看起来像:
+--------+-------+-------+
| market | sales | data |
+--------+-------+-------+
| I | 180 | 43831 |
+--------+-------+-------+
然后我希望第二个表看起来像上面的一个,但是在市场和日期中添加一个带有唯一产品名称的“字典”附加列,所以对于 MRCC,它看起来像:
+--------+-------+-------+----------------+
| market | sales | data | unique product |
+--------+-------+-------+----------------+
| I | 180 | 43831 | eli |
| I | 180 | 43831 | Sut |
+--------+-------+-------+----------------+
问题是,我在 SQL 方面没有那么丰富的经验,而且我对 DataProcessing 还很陌生,我正在使用的系统允许我通过一些“视觉”配方或通过我的 SQL 代码来进行一些数据处理不是那么熟悉。甚至令人困惑的是我可以在 3 SQL DBMS、Impala、Hive、Spark SQL 之间进行选择——例如,我使用 Impala 创建市场列,脚本看起来像这样,我不确定这是否是“纯”Impala 语法:
SELECT * from
(
-- mrc I --
SELECT *,case when
(`product`="Eli")
or
(`product`="Sut")
THEN "MRCC I"
end as market
FROM x.`y`
)a
where market is not null
你能给我一些关于代码结构的提示吗?如果可能的话?
谢谢, em
【问题讨论】:
【参考方案1】: import spark.implicits._
import org.apache.spark.sql.functions._
case class Sale(
corp: String,
product: String,
data: Long,
group: String,
sales: Long,
market: String
)
val df = Seq(
Sale("A", "Eli", 43831, "A", 100, "I"),
Sale("A", "Eli", 43831, "B", 100, "I"),
Sale("A", "Sut", 43831, "A", 80, "I"),
Sale("A", "Api", 43831, "C", 50, "C or D"),
Sale("A", "Api", 43831, "D", 50, "C or D"),
Sale("B", "Konkurent2", 43831, "C", 40, "C or D")
).toDF()
val t2 = df.dropDuplicates(Seq("corp", "product", "data", "market"))
.groupBy("market", "product", "data").sum("sales")
.select(
'market,
col("sum(sales)").alias("sales"),
'data,
'product.alias("unique product")
)
t2.show(false)
// +------+-----+-----+--------------+
// |market|sales|data |unique product|
// +------+-----+-----+--------------+
// |I |80 |43831|Sut |
// |I |100 |43831|Eli |
// |C or D|40 |43831|Konkurent2 |
// |C or D|50 |43831|Api |
// +------+-----+-----+--------------+
val t1 = t2.drop("unique product")
.groupBy("market", "data").sum("sales")
.select(
'market,
col("sum(sales)").alias("sales"),
'data)
t1.show(false)
// +------+-----+-----+
// |market|sales|data |
// +------+-----+-----+
// |I |180 |43831|
// |C or D|90 |43831|
// +------+-----+-----+
【讨论】:
谢谢!我不确定我是否会在我的案例中使用这个脚本,但可以肯定的是,它帮助我逐步理解了我必须做的事情背后的逻辑!以上是关于不同的总和和分组依据的主要内容,如果未能解决你的问题,请参考以下文章