当我尝试为 scikit-learn 模型拟合另外 1 个功能时,出现此错误“ValueError:找到样本数量不一致的输入变量”
Posted
技术标签:
【中文标题】当我尝试为 scikit-learn 模型拟合另外 1 个功能时,出现此错误“ValueError:找到样本数量不一致的输入变量”【英文标题】:When I try to fit scikit-learn model with 1 more feature, I have this error "ValueError: Found input variables with inconsistent numbers of samples" 【发布时间】:2019-11-11 01:26:10 【问题描述】:我的代码运行良好
df_amazon = pd.read_csv ("datasets/amazon_alexa.tsv", sep="\t")
X = df_amazon['variation'] # the features we want to analyze
ylabels = df_amazon['feedback'] # the labels, or answers, we want to test against
X_train, X_test, y_train, y_test = train_test_split(X, ylabels, test_size=0.3)
# Create pipeline using Bag of Words
pipe = Pipeline([('cleaner', predictors()),
('vectorizer', bow_vector),
('classifier', classifier)])
pipe.fit(X_train,y_train)
但如果我尝试在模型中再添加 1 个功能,则替换
X = df_amazon['variation']
通过
X = df_amazon[['variation','verified_reviews']]
当我致电fit
时,我收到来自 Sklearn 的错误消息:
ValueError: 发现样本数量不一致的输入变量:[2, 2205]
所以fit
在X_train
和y_train
具有形状时起作用
(2205,) 和 (2205,)。
但不是当形状更改为 (2205, 2) 和 (2205,)。
最好的办法是什么?
【问题讨论】:
你用过Countvectorizer吗???? 是的,我做到了。也许问题可能与管道有关。 【参考方案1】:数据的形状必须为(n_samples, n_features)
。尝试转置 X (X.T
)。
【讨论】:
如果我尝试转置 X,X = df_amazon[['variation','verified_reviews']].T
,错误变为 ValueError: Found input variables with contrast numbers of samples: [2, 3150]【参考方案2】:
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
df = pd.DataFrame(data = [['Heather Gray Fabric','I received the echo as a gift.',1],['Sandstone Fabric','Without having a cellphone, I cannot use many of her features',0]], columns = ['variation','review','feedback'])
vect = CountVectorizer()
vect.fit_transform(df[['variation','review']])
# now when you look at vocab that has been created
print(vect.vocabulary_)
#o/p, where feature has been generated only for column name and not content of particular column
Out[49]:
'variation': 1, 'review': 0
#so you need to make one column which contain which contain variation and review both and that need to be passed into your model
df['variation_review'] = df['variation'] + df['review']
vect.fit_transform(df['variation_review'])
print(vect.vocabulary_)
'heather': 8,
'gray': 6,
'fabrici': 3,
'received': 9,
'the': 11,
'echo': 2,
'as': 0,
'gift': 5,
'sandstone': 10,
'fabricwithout': 4,
'having': 7,
'cellphone': 1
【讨论】:
确实df['variation_review'] = df['variation'] + df['review']
解决了这个问题,但我不知道这是否是一个好的解决方案,一旦“变体”是一个类别而“评论”是一个文本。 qaiser,你怎么看?
查看此链接,***.com/questions/39121104/…以上是关于当我尝试为 scikit-learn 模型拟合另外 1 个功能时,出现此错误“ValueError:找到样本数量不一致的输入变量”的主要内容,如果未能解决你的问题,请参考以下文章