如何取出预训练的 keras 模型的中间层

Posted

技术标签:

【中文标题】如何取出预训练的 keras 模型的中间层【英文标题】:how to take out the intermediate layer of a a pretrained keras model 【发布时间】:2019-11-28 16:58:48 【问题描述】:

我想使用VGG模型(tensorflow或keras预训练模型)作为特征提取器;我加载了VGG16 model

IMG_SHAPE = (224, 224, 3)
vgg16 = tf.keras.applications.VGG16(input_shape = IMG_SHAPE,
                                    include_top=False,
                                    weights='imagenet')

现在如果我有一批图像

image_batch  =np.ones((5,224,224,3),np.float32)

我可以通过

得到最后一层VGG16
last_layer = vgg16(image_batch)

有没有人知道在给定输入图像 image_batch 的情况下获取中间层特征?那就是我想提取给定图像的较低级别的特征。非常感谢!

【问题讨论】:

你见过:***.com/questions/41711190/… 吗? 感谢您的 cmets。我阅读了您提到的帖子的公认解决方案;但那个无关紧要;但是,第二个很好。谢谢。 【参考方案1】:

您可以执行以下操作:

IMG_SHAPE = (224, 224, 3)
model = tf.keras.applications.VGG16(input_shape = IMG_SHAPE,
                                    include_top=False,
                                    weights=None)
pretrain_model_path = "weights/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5"
model.load_weights(pretrain_model_path)
# print(model.summary())

image_batch = np.ones((5,224,224,3),np.float32)

last_layer = tf.keras.models.Model(inputs=model.input, outputs=model.get_layer('block5_pool').output)
res = last_layer.predict(image_batch)

但是,你怎么知道在model.get_layer() 中传递什么?

回答 - 通过model.summary()

如果你打印model.summary()的输出,你会得到不同的层名,你可以传入model.get_layer(),得到那个层的输出。

Layer (type)                 Output Shape              Param #   
=================================================================
input_17 (InputLayer)        (None, 224, 224, 3)       0         
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
=================================================================
Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0

【讨论】:

以上是关于如何取出预训练的 keras 模型的中间层的主要内容,如果未能解决你的问题,请参考以下文章

如何在 Keras 中将顺序模型添加到预训练模型?

如何使用分布式 Dask 和预训练的 Keras 模型进行模型预测?

如何使用 PyTorch 在预训练模型上添加新层? (给出了 Keras 示例。)

如何在 Keras 中使用预训练的 CNN 实现连体网络?

在 keras 中微调预训练模型

使用来自 Keras 应用程序的模型,无需预训练权重