Alexnet 神经网络:如何减少网络的消耗量?
Posted
技术标签:
【中文标题】Alexnet 神经网络:如何减少网络的消耗量?【英文标题】:Alexnet neutal network: how to decrease the consumption size of the network? 【发布时间】:2021-01-10 09:40:57 【问题描述】:我的“caffe”只支持“CPU”-没有 GPU-;在大约 100mb 的数据集上运行 Alexnet 会消耗很大一部分内存——接近 400GB——;我希望能够以更少的内存消耗运行它。
现在我正在使用更小的数据集运行网络——大约 10 张图像用于训练和验证——;它运行良好,但我想增加我的数据集。
请帮助我,我对 AI 的了解非常浅薄,我希望有解决方案来减少 CPU 消耗的整体大小 + 运行更大的数据集。
solver.prototxt
net: "models/people_alexnet/train_val.prototxt"
test_iter: 100
test_interval: 200
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 100000
display: 20
max_iter: 450000
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "models/people_alexnet/caffe_alexnet_train"
solver_mode: CPU
train_val.prototxt
name: "AlexNet"
layer
name: "data"
type: "Data"
top: "data"
top: "label"
include
phase: TRAIN
transform_param
mirror: true
crop_size: 227
mean_file: "data/people/mean.binaryproto"
data_param
source: "examples/people/people_train_lmdb/"
batch_size: 10
backend: LMDB
layer
name: "data"
type: "Data"
top: "data"
top: "label"
include
phase: TEST
transform_param
mirror: false
crop_size: 227
mean_file: "data/people/mean.binaryproto"
data_param
source: "examples/people/val_lmdb"
batch_size: 5
backend: LMDB
layer
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param
lr_mult: 1
decay_mult: 1
param
lr_mult: 2
decay_mult: 0
convolution_param
num_output: 96
kernel_size: 11
stride: 4
weight_filler
type: "gaussian"
std: 0.01
bias_filler
type: "constant"
value: 0
layer
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
layer
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param
local_size: 5
alpha: 0.0001
beta: 0.75
layer
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param
pool: MAX
kernel_size: 3
stride: 2
layer
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param
lr_mult: 1
decay_mult: 1
param
lr_mult: 2
decay_mult: 0
convolution_param
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler
type: "gaussian"
std: 0.01
bias_filler
type: "constant"
value: 0.1
layer
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
layer
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param
local_size: 5
alpha: 0.0001
beta: 0.75
layer
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param
pool: MAX
kernel_size: 3
stride: 2
layer
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param
lr_mult: 1
decay_mult: 1
param
lr_mult: 2
decay_mult: 0
convolution_param
num_output: 384
pad: 1
kernel_size: 3
weight_filler
type: "gaussian"
std: 0.01
bias_filler
type: "constant"
value: 0
layer
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
layer
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param
lr_mult: 1
decay_mult: 1
param
lr_mult: 2
decay_mult: 0
convolution_param
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler
type: "gaussian"
std: 0.01
bias_filler
type: "constant"
value: 0.1
layer
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
layer
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param
lr_mult: 1
decay_mult: 1
param
lr_mult: 2
decay_mult: 0
convolution_param
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler
type: "gaussian"
std: 0.01
bias_filler
type: "constant"
value: 0.1
layer
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
layer
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param
pool: MAX
kernel_size: 3
stride: 2
layer
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param
lr_mult: 1
decay_mult: 1
param
lr_mult: 2
decay_mult: 0
inner_product_param
num_output: 4096
weight_filler
type: "gaussian"
std: 0.005
bias_filler
type: "constant"
value: 0.1
layer
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
layer
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param
dropout_ratio: 0.5
layer
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param
lr_mult: 1
decay_mult: 1
param
lr_mult: 2
decay_mult: 0
inner_product_param
num_output: 4096
weight_filler
type: "gaussian"
std: 0.005
bias_filler
type: "constant"
value: 0.1
layer
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
layer
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param
dropout_ratio: 0.5
layer
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param
lr_mult: 1
decay_mult: 1
param
lr_mult: 2
decay_mult: 0
inner_product_param
num_output: 2
weight_filler
type: "gaussian"
std: 0.01
bias_filler
type: "constant"
value: 0
layer
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include
phase: TEST
layer
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
【问题讨论】:
【参考方案1】:我设法通过减小“train_val.prototxt”中的“batch-size”以减小大小运行网络:
data_param
source: "examples/people/people_val_lmdb"
batch_size: 2 -> #changed from 5
backend: LMDB
现在网络只需要 12GB:
Memory required for data: 1236704
【讨论】:
以上是关于Alexnet 神经网络:如何减少网络的消耗量?的主要内容,如果未能解决你的问题,请参考以下文章