随机森林:寻找相关特征
Posted
技术标签:
【中文标题】随机森林:寻找相关特征【英文标题】:Random Forest : finding relevant features 【发布时间】:2017-07-19 08:04:35 【问题描述】:我正在尝试在 sklearn 中训练一个 RF 模型进行分类。对于一组指定的特征向量,我得到的测试准确度非常低。我假设我选择的特征向量误导了模型。所以我尝试了 RFE、RFECV 等来找到一组相关的特征向量 - 无助于提高准确性。我想出了一个简单的特征选择过程如下>
ml_feats = #initial set of feature vector
while True
feats_to_del=[]
prev_score=0
for feat_len in range(2,len(ml_feats)):
classifier = RandomForestClassifier(**init_params)
classifier.fit(X[ml_feats[:feat_len]],Y)
score = classifier.score(Xt[ml_feats[:feat_len]],Yt)
if score<prev_score:
#feature that caused the score to decrease
print ml_feats[feat_len]
feat_to_del.append(ml_feats[feat_len])
prev_score=score
if len(feats_to_del)==0:
break
#delete irrelevant features
ml_feats=list(set(ml_feats)-set(feats_to_del))
print ml_feats #print all relevant features
上面的代码是否有助于找出正确的功能集? 谢谢
【问题讨论】:
【参考方案1】:你正在做的是一个贪婪的特征选择。如果你想使用 RandomForestClassifier 来选择特征,你可以这样做:
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel
# xtrain : training data
# ytrain : training labels
clf = RandomForestClassifier()
sfm = SelectFromModel(estimator=clf, threshold='mean') # threshold of selection is mean of feature importances by random forest classifier
sfm.fit(xtrain, ytrain)
selected_xtrain = sfm.transform(xtrain)
【讨论】:
它是否有助于删除不相关的功能? 如果不看数据,很难说什么会奏效以上是关于随机森林:寻找相关特征的主要内容,如果未能解决你的问题,请参考以下文章