ValueError:在 TFIDF 上训练 KD TRee 时使用序列设置数组元素

Posted

技术标签:

【中文标题】ValueError:在 TFIDF 上训练 KD TRee 时使用序列设置数组元素【英文标题】:ValueError: setting an array element with a sequence while training KD TRee on TFIDF 【发布时间】:2016-10-31 06:44:00 【问题描述】:

我正在尝试在文档语料库的 TF-IDF 上训练 KD-Tree,但它给出了

ValueError: setting an array element with a sequence.

代码和错误描述如下。有人可以帮我解决问题吗?

代码:

t0 = time.time()
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(X)

tfidf_transformer = TfidfTransformer()
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)

t1 = time.time()
total = t1-t0
print "TF-IDF built:", total

#######################------------------------############################

t0 = time.time()
#nbrs = NearestNeighbors(n_neighbors=20, algorithm='kd_tree', metric='euclidean')
#nbrs.fit(X_train_tfidf)#,Y)
nbrs = KDTree(np.array(X_train_tfidf), leaf_size=100) 


t1 = time.time()
total = t1-t0
print "KNN Trained:", total

#######################------------------------############################

这是错误:

TF-IDF built: 0.108999967575
Traceback (most recent call last):
  File ".\tfidf_knn.py", line 48, in <module>
    nbrs = KDTree(np.array(X_train_tfidf), leaf_size=100)
  File "sklearn/neighbors/binary_tree.pxi", line 1055, in sklearn.neighbors.kd_tree.BinaryTree.__init__ (sklearn\neighbo
rs\kd_tree.c:8298)
  File "C:\Anaconda2\lib\site-packages\numpy\core\numeric.py", line 474, in asarray
    return array(a, dtype, copy=False, order=order)
ValueError: setting an array element with a sequence.

【问题讨论】:

【参考方案1】:

X_train_tfidf 是一个稀疏矩阵 (scipy.sparse),为了转换为 numpy 数组,您需要执行 . toarray() 。这个例子适合我:

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
import time
from sklearn.neighbors import KDTree
from scipy.sparse import csr_matrix # sparse format compatible with sklearn models
from  sklearn.neighbors import NearestNeighbors


import numpy as np
X=[ 'I Love dogs' ,
'you love cats',
' He loves Birds',
' she loves lizards',
' None loves me'
]
t0 = time.time()
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(X)

tfidf_transformer = TfidfTransformer()
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)

t1 = time.time()
total = t1-t0
print "TF-IDF built:", total

#######################------------------------############################

t0 = time.time()
nbrs = KDTree(X_train_tfidf.toarray(), leaf_size=100) 

################## for sparse input we cannot use kdtree, but we can use brute #################
#nbrs = NearestNeighbors(n_neighbors=20, algorithm='kd_tree')
#nbrs.fit(csr_matrix(X_train_tfidf))#,Y)


t1 = time.time()
total = t1-t0
print "KNN Trained:", total

印刷:

TF-IDF built: 0.00499987602234
KNN Trained: 0.029000043869

【讨论】:

感谢您的帮助!然而,它适用于小数据,但是当它给它一个巨大的数组时——我得到了一个内存,因为在我执行“toarray()”之后——矩阵不再稀疏了。有没有办法给KDTree一个稀疏矩阵? 嘿。看我的编辑。您不能将 kd_tree 与稀疏输入一起使用,但您可以将方法更改为 brute。结果应该不会有太大的不同。您还需要将稀疏矩阵转换为与 sklearn 模型更兼容的另一种形式(csr_matrix)。

以上是关于ValueError:在 TFIDF 上训练 KD TRee 时使用序列设置数组元素的主要内容,如果未能解决你的问题,请参考以下文章

TFIDF Vectorizer 抛出 ValueError:空词汇

ValueError:输入具有 n_features=12,而模型已使用 n_features=2494 进行了训练

在 pycharm 上加载经过训练的 Tensorflow 保存模型时出错。 ValueError:int() 的无效文字,基数为 10:'class_name'

TFIDF计算

如何修复 tensorflow 中的“ValueError:空训练数据”错误

fasttext 预训练句子相似度