以流水线方式输出决策树
Posted
技术标签:
【中文标题】以流水线方式输出决策树【英文标题】:output decision tree in the pipeline manner 【发布时间】:2020-01-21 15:35:42 【问题描述】:您好,由于我是使用 sklearn 库的机器学习方法的新手,我尝试将决策树合并到管道中,然后对模型进行预测和输出,但是当我运行以下代码时,我收到了警告:
“管道”对象没有属性“树_”
所以我想知道管道是否不支持树输出,我该如何解决这个问题?我也尝试过直接使用 decision_tree 类,但我收到了另一个警告: 使用序列设置数组元素。 我知道这似乎是因为我有不同维度的向量,但仍然不知道如何处理这种情况。
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.pipeline import Pipeline
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree.export import export_text
from sklearn import tree
# a function that reads the corpus, tokenizes it and returns the documents
# and their labels
def read_corpus(corpus_file, use_sentiment):
documents = []
labels = []
with open(corpus_file, encoding='utf-8') as f:
for line in f:
tokens = line.strip().split()
documents.append(tokens[3:])
if use_sentiment:
# 2-class problem: positive vs negative
labels.append( tokens[1] )
else:
# 6-class problem: books, camera, dvd, health, music, software
labels.append( tokens[0] )
return documents, labels
# a dummy function that just returns its input
def identity(x):
return x
# read the data and split i into train and test
X, Y = read_corpus('/Users/dengchenglong/Downloads/trainset', use_sentiment=False)
split_point = int(0.75*len(X))
Xtrain = X[:split_point]
Ytrain = Y[:split_point]
Xtest = X[split_point:]
Ytest = Y[split_point:]
# let's use the TF-IDF vectorizer
tfidf = False
# we use a dummy function as tokenizer and preprocessor,
# since the texts are already preprocessed and tokenized.
if tfidf:
vec = TfidfVectorizer(preprocessor = identity,
tokenizer = identity)
else:
vec = CountVectorizer(preprocessor = identity,
tokenizer = identity)
# combine the vectorizer with a Naive Bayes classifier
classifier = Pipeline( [('vec', vec),
('cls', tree.DecisionTreeClassifier())])
# train the classifier on the train dataset
decision_tree = classifier.fit(Xtrain, Ytrain)
# predict the labels of the test data
Yguess = classifier.predict(Xtest)
tree.plot_tree(classifier.fit(Xtest, Ytest))
# report performance of the classifier
print(accuracy_score(Ytest, Yguess))
print(classification_report(Ytest, Yguess))
【问题讨论】:
【参考方案1】:如果你试试这个会怎样:
from sklearn.pipeline import make_pipeline
# combine the vectorizer with a Naive Bayes classifier
clf = DecisionTreeClassifier()
classifier = make_pipeline(vec,clf)
看起来,在使用管道之前,您必须启动您尝试应用的模型。让我知道这是否有效,如果没有,它返回的错误。 来自:Scikit-learn documentation 示例来自:Make pipeline example with trees
【讨论】:
不起作用...同样的警告成立,似乎管道不支持树中的功能? 已编辑答案...检查一下? 无论如何,我相信如果您点击我分享的第二个链接,您应该能够让这些树在您的管道中工作。如果这个新的 asnwer 有任何问题,请告诉我以上是关于以流水线方式输出决策树的主要内容,如果未能解决你的问题,请参考以下文章