SciPy solve_ivp 的解决方案包含一阶 ODE 系统的振荡
Posted
技术标签:
【中文标题】SciPy solve_ivp 的解决方案包含一阶 ODE 系统的振荡【英文标题】:Solution from SciPy solve_ivp contains oscillations for a system of first-order ODEs 【发布时间】:2019-12-23 06:13:01 【问题描述】:我正在尝试求解耦合的一阶 ODE 系统:
这里的 Tf 被认为是常数,Q(t) 是给定的。 Q(t) 的图如下所示。用于创建时间与 Q 图的数据文件可在here 获得。
对于给定的 Q(t)(指定为 qheat
),我用于解决此系统的 Python 代码是:
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import solve_ivp
# Data
time, qheat = np.loadtxt('timeq.txt', unpack=True)
# Calculate Temperatures
def tc_dt(t, tc, ts, q):
rc = 1.94
cc = 62.7
return ((ts - tc) / (rc * cc)) + q / cc
def ts_dt(t, tc, ts):
rc = 1.94
ru = 3.08
cs = 4.5
tf = 298.15
return ((tf - ts) / (ru * cs)) - ((ts - tc) / (rc * cs))
def func(t, y):
idx = np.abs(time - t).argmin()
q = qheat[idx]
tcdt = tc_dt(t, y[0], y[1], q)
tsdt = ts_dt(t, y[0], y[1])
return tcdt, tsdt
t0 = time[0]
tf = time[-1]
sol = solve_ivp(func, (t0, tf), (298.15, 298.15), t_eval=time)
# Plot
fig, ax = plt.subplots()
ax.plot(sol.t, sol.y[0], label='tc')
ax.plot(sol.t, sol.y[1], label='ts')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Temperature [K]')
ax.legend(loc='best')
plt.show()
这会产生如下所示的图,但不幸的是,结果中出现了几个振荡。有没有更好的方法来解决这个 ODE 耦合系统?
【问题讨论】:
您对q
的近似值可能是问题所在。我建议为此创建一个interpolation function。
我没有在我的示例中展示它,但我尝试使用 interp1d
表示 q 但它对结果中的波动没有帮助。
【参考方案1】:
就像在 cmets 中已经说过的那样,建议对 Q 进行插值。当尝试使用 RK45(solve_ivp 的标准)等显式方法求解刚性 ODE 系统时,通常会发生振荡。由于您的 ODE 系统似乎是一个僵硬的系统,因此进一步建议使用像“Radau”这样的隐式 Runge-Kutta 方法:
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import solve_ivp
from scipy.interpolate import interp1d
# Data
time, qheat = np.loadtxt('timeq.txt', unpack=True)
# Interpolate Q
Q = interp1d(time, qheat) # linear spline
# Calculate Temperatures
def tc_dt(t, tc, ts, q):
rc = 1.94
cc = 62.7
return ((ts - tc) / (rc * cc)) + q / cc
def ts_dt(t, tc, ts):
rc = 1.94
ru = 3.08
cs = 4.5
tf = 298.15
return ((tf - ts) / (ru * cs)) - ((ts - tc) / (rc * cs))
def func(t, y):
idx = np.abs(time - t).argmin()
tcdt = tc_dt(t, y[0], y[1], Q(t))
tsdt = ts_dt(t, y[0], y[1])
return tcdt, tsdt
t0 = time[0]
tf = time[-1]
# Note the passed values for rtol and atol.
sol = solve_ivp(func, (t0, tf), (298.15, 298.15), method="Radau", t_eval=time, atol=1e-8, rtol=1e-8)
# Plot
fig, ax = plt.subplots()
ax.plot(sol.t, sol.y[0], label='tc')
ax.plot(sol.t, sol.y[1], label='ts')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Temperature [K]')
ax.legend(loc='best')
plt.show()
给我:
【讨论】:
您的答案错过了应该出现的高峰。 Q函数有10个峰 @MatthewFlamm 我编辑了我的答案。我认为没有必要提供雅可比,而是降低误差估计的绝对容差(atol)和相对容差(rtol)会产生相同的合理解决方案。对于面临同样问题且使用更复杂的 ode-rhs 并且不想手动提供 jacobian 的用户来说,了解这一点可能很有用。 我同意不需要提供 jacobian(尽管推荐)。除了隐式方法之外,降低公差或修改 max_step 大小应该可以捕获所有峰值。您可能想说明为什么不使用默认公差,答案中同时包含这两种情况实际上非常有用。【参考方案2】:通过向求解器提供雅可比矩阵,我终于得到了 ODE 系统的合理解。请参阅下面的我的工作解决方案。
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import solve_ivp
from scipy.interpolate import interp1d
# Data
time, qheat = np.loadtxt('timeq.txt', unpack=True)
# Calculate Temperatures
interp_qheat = interp1d(time, qheat)
def tc_dt(t, tc, ts, q):
"""
dTc/dt = (Ts-Tc)/(Rc*Cc) + Q/Cc
"""
rc = 1.94
cc = 62.7
return ((ts - tc) / (rc * cc)) + q / cc
def ts_dt(t, tc, ts):
"""
dTs/dt = (Tf-Ts)/(Ru*Cs) - (Ts-Tc)/(Rc*Cs)
"""
rc = 1.94
ru = 3.08
cs = 4.5
tf = 298.15
return ((tf - ts) / (ru * cs)) - ((ts - tc) / (rc * cs))
def jacobian(t, y):
"""
Given the following system of ODEs
dTc/dt = (Ts-Tc)/(Rc*Cc) + Q/Cc
dTs/dt = (Tf-Ts)/(Ru*Cs) - (Ts-Tc)/(Rc*Cs)
determine the Jacobian matrix of the right-hand side as
Jacobian matrix = [df1/dTc, df2/dTc]
[df1/dTs, df2/dTs]
where
f1 = (Ts-Tc)/(Rc*Cc) + Q/Cc
f2 = (Tf-Ts)/(Ru*Cs) - (Ts-Tc)/(Rc*Cs)
"""
cc = 62.7
cs = 4.5
rc = 1.94
ru = 3.08
jc = np.array([
[-1 / (cc * rc), 1 / (cs * rc)],
[1 / (cc * rc), -1 / (cs * ru) - 1 / (cs * rc)]
])
return jc
def func(t, y):
"""
Right-hand side of the system of ODEs.
"""
q = interp_qheat(t)
tcdt = tc_dt(t, y[0], y[1], q)
tsdt = ts_dt(t, y[0], y[1])
return tcdt, tsdt
t0 = time[0]
tf = time[-1]
sol = solve_ivp(func, (t0, tf), (298.15, 298.15), method='BDF', t_eval=time, jac=jacobian)
# Plot
fig, ax = plt.subplots(tight_layout=True)
ax.plot(sol.t, sol.y[0], label='tc')
ax.plot(sol.t, sol.y[1], label='ts')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Temperature [K]')
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False)
plt.show()
生成的图如下所示。
插入 Q 的唯一好处是通过删除 main 函数中的 argmin()
来加快代码的执行。否则,插值 Q 不会改善结果。
【讨论】:
通过切换到 BDF(一种隐式求解器)而不是默认求解器 RK45(一种显式求解器),可能会改进解决方案。 您可能还想考虑限制最大步长,即使您在这里没问题,在某些情况下您也可以轻松跨过尖峰。以上是关于SciPy solve_ivp 的解决方案包含一阶 ODE 系统的振荡的主要内容,如果未能解决你的问题,请参考以下文章
scipy.integrate.solve_ivp 中的初始值
在 scipy.integrate.solve_ivp python 中传递矩阵作为输入
scipy solve_ivp events:导数积分中的事件