计算截断对数正态分布的平均值

Posted

技术标签:

【中文标题】计算截断对数正态分布的平均值【英文标题】:Calculating the mean of truncated log normal distribution 【发布时间】:2021-11-21 05:25:13 【问题描述】:

我正在尝试。 我有一个随机变量 x,它具有与 std a 的对数正态分布。

我想计算xx < y 的平均值

注意 - 如果x 是正态分布的,可以使用this 库计算:

from scipy.stats import truncnorm
my_mean = 100
my_std = 20
myclip_a = 0
myclip_b = 95
a, b = (myclip_a - my_mean) / my_std, (myclip_b - my_mean) / my_std
new_mean = truncnorm.mean(a, b, my_mean, my_std)

我想转换此代码,假设分布是对数正态分布而不是正态分布。

【问题讨论】:

【参考方案1】:

可能有更优雅的方法可以做到这一点,但我最终恢复为在截断结果之间的范围内整合对数正态 pdf 乘以 x 来解决这个问题。

下面是一个 Python 示例 - 忽略我指定未截断对数正态分布均值和标准差的笨拙方式,这只是我工作的一个特点。

它应该在任何截断(x1 = 下限,x2 = 上限)之间工作,包括零到无穷大(使用 np.inf)

import math
from scipy.special import erf
import numpy as np

P10 = 50                         # Untruncated P10 (ie 10% outcomes higher than this)
P90 = 10                         # Untruncated P90  (ie 90% outcomes higher than this)
u = (np.log(P90)+np.log(P10))/2  # Untruncated Mean of the log transformed distribution
s = np.log(P10/P90)/2.562        # Standard Deviation

# Returns integral of the lognormal pdf multiplied by the lognormal outcomes (x)
# Between lower (x1) and upper (x2) truncations
# pdf and cdf equations from https://en.wikipedia.org/wiki/Log-normal_distribution
# Integral evaluated with;
# https://www.wolframalpha.com/input/?i2d=true&i=Integrate%5Bexp%5C%2840%29-Divide%5BPower%5B%5C%2840%29ln%5C%2840%29x%5C%2841%29-u%5C%2841%29%2C2%5D%2C%5C%2840%292*Power%5Bs%2C2%5D%5C%2841%29%5D%5C%2841%29%2Cx%5D
def ln_trunc_mean(u, s, x1, x2):
    if x2 != np.inf:
        upper = erf((s**2+u-np.log(x2))/(np.sqrt(2)*s))
        upper_cum_prob = 0.5*(1+erf((np.log(x2)-u)/(s*np.sqrt(2)))) # CDF
    else:
        upper = -1
        upper_cum_prob = 1

    if x1 != 0:
        lower = erf((s**2+u-np.log(x1))/(np.sqrt(2)*s))
        lower_cum_prob = 0.5*(1+erf((np.log(x1)-u)/(s*np.sqrt(2))))
    else:
        lower = 1
        lower_cum_prob = 0

    integrand = -0.5*np.exp(s**2/2+u)*(upper-lower) # Integral of PDF.x.dx

    return integrand / (upper_cum_prob - lower_cum_prob)

然后您可以评估 - 例如,未截断的平均值以及具有上下 1 个百分位剪裁的平均值,如下所示

# Untruncated Mean
print(ln_trunc_mean(u, s, 0, np.inf))

27.238164532490508

# Truncated mean between 5.2 and 96.4
print(ln_trunc_mean(u, s, 5.2, 96.4))

26.5089880192863

【讨论】:

以上是关于计算截断对数正态分布的平均值的主要内容,如果未能解决你的问题,请参考以下文章

加快从叠加截断正态分布中绘制随机值

如何在 Python 中为截断的正态分布生成相关随机数?

正态分布的均值与方差怎么算?

如何在Matlab中生成具有对数正态分布和指定几何平均数和几何标准差的随机数

数据分布vs聚类-数据预处理技巧-对数变换

在R语言和Stan中估计截断泊松分布