情感分析管道,使用特征选择时获取正确特征名称的问题
Posted
技术标签:
【中文标题】情感分析管道,使用特征选择时获取正确特征名称的问题【英文标题】:Sentiment analysis Pipeline, problem getting the correct feature names when feature selection is used 【发布时间】:2019-11-15 23:09:51 【问题描述】:在以下示例中,我使用 twitter 数据集执行情绪分析。我使用 sklearn 管道执行一系列转换,添加特征并添加分类器。最后一步是可视化具有更高预测能力的单词。当我不使用特征选择时它工作正常。但是,当我使用它时,我得到的结果毫无意义。我怀疑当应用特征选择时,文本特征的顺序会发生变化。有没有办法解决这个问题?
以下代码已更新为包含正确答案
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline, FeatureUnion
features= [c for c in df.columns.values if c not in ['target']]
target = 'target'
#train test split
X_train, X_test, y_train, y_test = train_test_split(df[features], df[target], test_size=0.2,stratify = df5[target], random_state=0)
#Create classes which allow to select specific columns from the dataframe
class NumberSelector(BaseEstimator, TransformerMixin):
def __init__(self, key):
self.key = key
def fit(self, X, y=None):
return self
def transform(self, X):
return X[[self.key]]
class TextSelector(BaseEstimator, TransformerMixin):
def __init__(self, key):
self.key = key
def fit(self, X, y=None):
return self
def transform(self, X):
return X[self.key]
class ColumnExtractor(TransformerMixin):
def __init__(self, cols):
self.cols = cols
def fit(self, X, y=None):
# stateless transformer
return self
def transform(self, X):
# assumes X is a DataFrame
Xcols = X[self.cols]
return Xcols
class DummyTransformer(TransformerMixin):
def __init__(self):
self.dv = None
def fit(self, X, y=None):
# assumes all columns of X are strings
Xdict = X.to_dict('records')
self.dv = DictVectorizer(sparse=False)
self.dv.fit(Xdict)
return self
def transform(self, X):
# assumes X is a DataFrame
Xdict = X.to_dict('records')
Xt = self.dv.transform(Xdict)
cols = self.dv.get_feature_names()
Xdum = pd.DataFrame(Xt, index=X.index, columns=cols)
# drop column indicating NaNs
nan_cols = [c for c in cols if '=' not in c]
Xdum = Xdum.drop(nan_cols, axis=1)
Xdum.drop(list(Xdum.filter(regex = 'unknown')), axis = 1, inplace = True)
return Xdum
def pipelinize(function, active=True):
def list_comprehend_a_function(list_or_series, active=True):
if active:
return [function(i) for i in list_or_series]
else: # if it's not active, just pass it right back
return list_or_series
return FunctionTransformer(list_comprehend_a_function, validate=False, kw_args='active':active)
#function to plot the coeficients of the words in the text with the highest predictive power
def plot_coefficients(classifier, feature_names, top_features=50):
if classifier.__class__.__name__ == 'SVC':
coef = classifier.coef_
coef2 = coef.toarray().ravel()
coef1 = coef2[:len(feature_names)]
else:
coef1 = classifier.coef_.ravel()
top_positive_coefficients = np.argsort(coef1)[-top_features:]
top_negative_coefficients = np.argsort(coef1)[:top_features]
top_coefficients = np.hstack([top_negative_coefficients, top_positive_coefficients])
# create plot
plt.figure(figsize=(15, 5))
colors = ['red' if c < 0 else 'blue' for c in coef1[top_coefficients]]
plt.bar(np.arange(2 * top_features), coef1[top_coefficients], color=colors)
feature_names = np.array(feature_names)
plt.xticks(np.arange(1, 1 + 2 * top_features), feature_names[top_coefficients], rotation=90, ha='right')
plt.show()
#create a custome stopwords list
stop_list = stopwords(remove_stop_word ,add_stop_word )
#vectorizer
tfidf=TfidfVectorizer(sublinear_tf=True, stop_words = set(stop_list),ngram_range = (1,2))
#categorical features
CAT_FEATS = ['location','account']
#dimensionality reduction
pca = TruncatedSVD(n_components=200)
#scaler for numerical features
scaler = StandardScaler()
#classifier
model = SVC(kernel = 'linear', probability=True, C=1, class_weight = 'balanced')
text = Pipeline([('selector', TextSelector(key='content')),('text_preprocess', pipelinize(text_preprocessing)),('vectorizer',tfidf),('important_features',select)])
followers = Pipeline([('selector', NumberSelector(key='followers')),('scaler', scaler)])
location = Pipeline([('selector',ColumnExtractor(CAT_FEATS)),('scaler',DummyTransformer())])
feats = FeatureUnion([('text', text), ('length', followers), ('location',location)])
pipeline = Pipeline([('features',feats),('classifier', model)])
pipeline.fit(X_train, y_train)
preds = pipeline.predict(X_test)
feature_names = text.named_steps['vectorizer'].get_feature_names()
feature_names = np.array(feature_names)[text.named_steps['important_features'].get_support(True)]
classifier = pipe.named_steps['classifier']
plot_coefficients(classifier, feature_names)
特征选择之前
特征选择后
要使用功能选择,我将以下代码行更改为
text = Pipeline([('selector', TextSelector(key='content')),
('text_preprocess', pipelinize(text_preprocessing)),
('vectorizer',tfidf)])
到
select = SelectKBest(f_classif, k=8000)
text = Pipeline([('selector', TextSelector(key='content')),
('text_preprocess', pipelinize(text_preprocessing)),
('vectorizer',tfidf),
('important_features',select)])
【问题讨论】:
我想指出您对“降维”一词的使用可以说是不正确的。通常降维指的是诸如 PCA 和 SVD 之类的东西,它们通过变换来减少空间。您所做的通常被称为“特征选择”。功能选择器确实是您的问题的根源,因为它将索引重新分配给新功能。这是一种查找映射的方法:***.com/questions/39839112/… @amdex 我已经更新了我的问题。不幸的是,您建议的方法在我的情况下不起作用,可能是因为矢量化器返回了一个稀疏矩阵。 【参考方案1】:为什么会这样
发生这种情况是因为特征选择会选择最重要的特征并丢弃其他特征,因此索引不再有意义。
假设您有以下示例:
X = np.array(["This is the first document","This is the second document",
"This is the first again"])
y = np.array([0,1,0])
显然,驱动分类的两个主要词是“第一”和“第二”。使用与您类似的管道,您可以:
tfidf = TfidfVectorizer()
sel = SelectKBest(k = 2)
pipe = Pipeline([('vectorizer',tfidf), ('select',sel)])
pipe.fit(X,y)
feature_names = np.array(pipe['vectorizer'].get_feature_names())
feature_names[pipe['select'].get_support(True)]
>>> array(['first', 'second'], dtype='<U8')
因此,你需要做的不仅仅是从tfidf向量化中获取特征,还要通过pipe['select'].get_support(True)
选择特征选择保留的索引。
您的代码中要更改的内容
因此,您应该在代码中更改的只是添加这行代码:
feature_names = text.named_steps['vectorizer'].get_feature_names()
## Add this line
feature_names = feature_names[text['important_features'].get_support(True)]
##
classifier = pipe.named_steps['classifier']
plot_coefficients(classifier, feature_names)
【讨论】:
您的原始答案产生了错误,但同时它为我提供了如何解决问题的良好方向。我已经更新了你的答案。如果您对编辑感到满意,很高兴接受您的回答。 如果你这样做,你能告诉我你是否得到错误:feature_names = np.array(feature_names)[text['important_features'].get_support(True)] ? 当我使用它时,我得到一个 'TypeError: 'Pipeline' object is not subscriptable' 错误。我认为问题出在 text['important_features'] 上,应该是 text.named_steps['important_features']。 它在我使用时有效:feature_names = np.array(feature_names)[text.named_steps['select_best_features'].get_support(True)]。我已经更新了你的答案。 我认为这可能是因为以前的 scikit learn 版本,两者应该确实是等价的以上是关于情感分析管道,使用特征选择时获取正确特征名称的问题的主要内容,如果未能解决你的问题,请参考以下文章
如何在 python 中的 sklearn 中的不同管道中获取特征名称
文本情感分析:基于词袋模型(VSMLSAn-gram)的文本表示