json_normalize JSON 文件,具有包含字典的多级列表(包括示例)
Posted
技术标签:
【中文标题】json_normalize JSON 文件,具有包含字典的多级列表(包括示例)【英文标题】:json_normalize JSON file with multiple levels of lists containing dictionary (sample included) 【发布时间】:2018-12-16 14:35:45 【问题描述】:(最初来自previous question,但为更一般的问题重新设计)
这是我使用 2 条记录的示例 json 文件:
["Time":"2016-01-10",
"ID"
:13567,
"Content":
"Event":"UPDATE",
"Id":"EventID":"ABCDEFG",
"Story":[
"@ContentCat":"News",
"Body":"Related Meeting Memo: Engagement with target firm for potential M&A. Please be on call this weekend for news updates.",
"BodyTextType":"PLAIN_TEXT",
"DerivedId":"Entity":["Id":"Amy","Score":70, "Id":"Jon","Score":70],
"DerivedTopics":"Topics":[
"Id":"Meeting","Score":70,
"Id":"Performance","Score":70,
"Id":"Engagement","Score":100,
"Id":"Salary","Score":70,
"Id":"Career","Score":100]
,
"HotLevel":0,
"LanguageString":"ENGLISH",
"Metadata":"ClassNum":50,
"Headline":"Attn: Weekend",
"WireId":2035,
"WireName":"IIS",
"Version":"Original"
],
"yyyymmdd":"20160110",
"month":201601,
"Time":"2016-01-12",
"ID":13568,
"Content":
"Event":"DEAL",
"Id":"EventID":"ABCDEFG2",
"Story":[
"@ContentCat":"Details",
"Body":"Test email contents",
"BodyTextType":"PLAIN_TEXT",
"DerivedId":"Entity":["Id":"Bob","Score":100, "Id":"Jon","Score":70, "Id":"Jack","Score":60],
"DerivedTopics":"Topics":[
"Id":"Meeting","Score":70,
"Id":"Engagement","Score":100,
"Id":"Salary","Score":70,
"Id":"Career","Score":100]
,
"HotLevel":0,
"LanguageString":"ENGLISH",
"Metadata":"ClassNum":70,
"Headline":"Attn: Weekend",
"WireId":2037,
"WireName":"IIS",
"Version":"Original"
],
"yyyymmdd":"20160112",
"month":201602]
我正在尝试获取实体 ID 级别的数据框(从记录 1 中提取 Amy
和 Jon
,从记录 2 中提取 Bob
、Jon
、Jack
)。我该怎么做呢?
为了澄清,级别是(内容 > 故事 > DerivedID > 实体 > Id)
【问题讨论】:
【参考方案1】:使用list comprehension,您可以像这样进入该结构:
with open('test.json', 'rU') as f:
data = json.load(f)
df = pd.DataFrame(sum([i['Content']['Story'][0]['DerivedId']['Entity']
for i in data], []))
print(df)
或者,如果您有大量数据并且不想做笨拙的sum()
,请使用itertools.chain.from_iterable
,例如:
import itertools as it
df = pd.DataFrame.from_records(it.chain.from_iterable(
i['Content']['Story'][0]['DerivedId']['Entity'] for i in data))
结果:
Id Score
0 Amy 70
1 Jon 70
2 Bob 100
3 Jon 70
4 Jack 60
【讨论】:
谢谢斯蒂芬。如果我想使用 pandas json_normalize 函数添加元数据,该怎么做? 我不太了解那个函数,而且你没有显示你希望的输出,所以......我不知道。【参考方案2】:df = pd.json_normalize(data, ['Content', 'Story', 'DerivedId', 'Entity'])
print(df)
记住,最后的根必须是 json 中的一个列表
结果:
Id Score
0 Amy 70
1 Jon 70
2 Bob 100
3 Jon 70
4 Jack 60
如果你只想要 id
df[['Id']]
【讨论】:
以上是关于json_normalize JSON 文件,具有包含字典的多级列表(包括示例)的主要内容,如果未能解决你的问题,请参考以下文章
json_normalize JSON 文件,列表包含字典(包括示例)
Pandas json_normalize 不会展平所有嵌套字段
pandas json_normalize KeyError