Pandas:合并数据框并将多个连接值合并到一个数组中
Posted
技术标签:
【中文标题】Pandas:合并数据框并将多个连接值合并到一个数组中【英文标题】:Pandas: merge dataframes and consolidate multiple joined values into an array 【发布时间】:2017-12-02 07:32:12 【问题描述】:我是 Python 的新手,我正在使用 Pandas 将一堆 mysql 表转换为 JSON。我当前的解决方案工作得很好,但是(1)它不是很pythonic,并且(2)我觉得必须有一些预先烘焙的Pandas fucntion来满足我的需要......?以下问题的任何指导都会有所帮助。
假设我有两个数据框,authors
和一个连接表 plays_authors
,它表示作者与戏剧之间的 1:many 关系。
print authors
> author_id dates notes
> 0 1 1700s a
> 1 2 1800s b
> 2 3 1900s c
print plays_authors
> author_id play_id
> 0 1 12
> 1 1 13
> 2 1 21
> 3 2 18
> 4 3 3
> 5 3 7
我想将plays_authors
合并到authors
,但不是每个作者有多行(每个play_id
1 个),我希望每个作者有一行,并带有一组play_id
值,以便我可以轻松将它们导出为 json 记录。
print authors
> author_id dates notes play_id
> 0 1 1700s a [12, 13, 21]
> 1 2 1800s b [18]
> 2 3 1900s c [3, 7]
authors.to_json(orient="records")
> '[
> "author_id":"1",
> "dates":"1700s",
> "notes":"a",
> "play_id":["12","13","21"]
> ,
>
> "author_id":"2",
> "dates":"1800s",
> "notes":"b",
> "play_id":["18"]
> ,
>
> "author_id":"3",
> "dates":"1900s",
> "notes":"c",
> "play_id":["3","7"]
> ]'
我目前的解决方案:
# main_df: main dataframe to transform
# join_df: the dataframe of the join table w values to add to df
# main_index: name of main_df index column
# multi_index: name of column w/ multiple values per main_index, added by merge with join_df
# jointype: type of merge to perform, e.g. left, right, inner, outer
def consolidate(main_df, join_df, main_index, multi_index, jointype):
# merge
main_df = pd.merge(main_df, join_df, on=main_index, how=jointype)
# consolidate
new_df = pd.DataFrame()
for i in main_df[main_index].unique():
i_rows = main_df.loc[main_df[main_index] == i]
values = []
for column in main_df.columns:
values.append(i_rows[:1][column].values[0])
row_dict = dict(zip(main_df.columns, values))
row_dict[multi_index] = list(i_rows[multi_index])
new_df = new_df.append(row_dict, ignore_index=True)
return new_df
authors = consolidate(authors, plays_authors, 'author_id', 'play_id', 'left')
是否有一个简单的 groupby / 更好的 dict 解决方案目前就在我头上?
【问题讨论】:
【参考方案1】:数据:
In [131]: a
Out[131]:
author_id dates notes
0 1 1700s a
1 2 1800s b
2 3 1900s c
In [132]: pa
Out[132]:
author_id play_id
0 1 12
1 1 13
2 1 21
3 2 18
4 3 3
5 3 7
解决方案:
In [133]: a.merge(pa.groupby('author_id')['play_id'].apply(list).reset_index())
Out[133]:
author_id dates notes play_id
0 1 1700s a [12, 13, 21]
1 2 1800s b [18]
2 3 1900s c [3, 7]
【讨论】:
完美!谢谢!以上是关于Pandas:合并数据框并将多个连接值合并到一个数组中的主要内容,如果未能解决你的问题,请参考以下文章