“ML_for_Hackers”[2]

Posted 吕吕吕吕吕

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了“ML_for_Hackers”[2]相关的知识,希望对你有一定的参考价值。

今天在处理文本回归时,遇到一个问题,需要记录。

ranks <- read.csv(‘/Users/lvxubo/Desktop/ML_for_Hackers-master/06-Regularization/data/oreilly.csv‘,stringsAsFactors=FALSE)
library(‘tm‘)
documents <- data.frame(Text=ranks$Long.Desc.)
row.names(documents) <- 1:nrow(documents)

corpus <- Corpus(DataframeSource(documents))
corpus <- tm_map(corpus,tolower)
corpus <- tm_map(corpus,stripWhitespace)
corpus <- tm_map(corpus,removeWords,stopwords(‘english‘))
corpus <- tm_map(corpus, PlainTextDocument)

dtm <- DocumentTermMatrix(corpus)

如果没有标记的一句代码,会报错:

Error in UseMethod("meta", x) : "meta"没有适用于"character"目标对象的方法
此外: Warning message:
In mclapply(unname(content(x)), termFreq, control) :
  all scheduled cores encountered errors in user code

这是stackoverflow上的解决:

It seems this would have worked just fine in tm 0.5.10 but changes in tm 0.6.0 seems to have broken it. The problem is that the functions tolower and trim won‘t necessarily return TextDocuments (it looks like the older version may have automatically done the conversion). They instead return characters and the DocumentTermMatrix isn‘t sure how to handle a corpus of characters.

So you could change to

corpus_clean <- tm_map(news_corpus, content_transformer(tolower))

Or you can run

corpus_clean <- tm_map(corpus_clean, PlainTextDocument)

after all of your non-standard transformations (those not in getTransformations()) are done and just before you create the DocumentTermMatrix. That should make sure all of your data is in PlainTextDocument and should make DocumentTermMatrix happy.

以上是关于“ML_for_Hackers”[2]的主要内容,如果未能解决你的问题,请参考以下文章

VSCode自定义代码片段2——.vue文件的模板

[读书笔记]机器学习:实用案例解析

为啥代码片段在 matplotlib 2.0.2 上运行良好,但在 matplotlib 2.1.0 上引发错误

web代码片段

sublime text3 增加代码片段(snipper)

JS常用代码片段2-值得收藏