第12课:Spark Streaming源码解读之Executor容错安全性

Posted snail_gesture

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了第12课:Spark Streaming源码解读之Executor容错安全性相关的知识,希望对你有一定的参考价值。

本篇博文的目标是
1. Executor的WAL机制详解
2. 消息重放Kafka

数据安全性的考虑:

  1. Spark Streaming不断的接收数据,并且不断的产生Job,不断的提交Job给集群运行。所以这就涉及到一个非常重要的问题数据安全性。
  2. Spark Streaming是基于Spark Core之上的,如果能够确保数据安全可好的话,在Spark Streaming生成Job的时候里面是基于RDD,即使运行的时候出现问题,那么Spark Streaming也可以借助Spark Core的容错机制自动容错。
  3. 对Executor容错主要是对数据的安全容错
  4. 为啥这里不考虑对数据计算的容错:计算的时候Spark Streaming是借助于Spark Core之上的容错的,所以天然就是安全可靠的。

Executor容错方式:
1. 最简单的容错是副本方式,基于底层BlockManager副本容错,也是默认的容错方式。
2. 接收到数据之后不做副本,支持数据重放,所谓重放就是支持反复读取数据。

这里写图片描述

BlockManager备份:

  1. 默认在内存中两份副本,也就是Spark Streaming的Receiver接收到数据之后存储的时候指定StorageLevel为MEMORY_AND_DISK_SER_2,底层存储是交给BlockManager,BlockManager的语义确保了如果指定了两份副本,一般都在内存中。所以至少两个Executor中都会有数据。
/**
 * :: DeveloperApi ::
 * Flags for controlling the storage of an RDD. Each StorageLevel records whether to use memory,
 * or ExternalBlockStore, whether to drop the RDD to disk if it falls out of memory or
 * ExternalBlockStore, whether to keep the data in memory in a serialized format, and whether
 * to replicate the RDD partitions on multiple nodes.
 *
 * The [[org.apache.spark.storage.StorageLevel$]] singleton object contains some static constants
 * for commonly useful storage levels. To create your own storage level object, use the
 * factory method of the singleton object (`StorageLevel(...)`).
 */
@DeveloperApi
class StorageLevel private(
    private var _useDisk: Boolean,
    private var _useMemory: Boolean,
    private var _useOffHeap: Boolean,
    private var _deserialized: Boolean,
    private var _replication: Int = 1)
  extends Externalizable {
2.  ReceiverBlockHandler源码如下:
private val receivedBlockHandler: ReceivedBlockHandler = {
//如果要开启WAL必须要有checkpoint目录。
  if (WriteAheadLogUtils.enableReceiverLog(env.conf)) {
    if (checkpointDirOption.isEmpty) {
      throw new SparkException(
        "Cannot enable receiver write-ahead log without checkpoint directory set. " +
          "Please use streamingContext.checkpoint() to set the checkpoint directory. " +
          "See documentation for more details.")
    }
    new WriteAheadLogBasedBlockHandler(env.blockManager, receiver.streamId,
      receiver.storageLevel, env.conf, hadoopConf, checkpointDirOption.get)
  } else {
    new BlockManagerBasedBlockHandler(env.blockManager, 
//此时的storageLevel是构建Receiver的时候传入进来的
receiver.storageLevel)
  }
}
3.  默认没有开启WAL机制。
/** A helper class with utility functions related to the WriteAheadLog interface */
private[streaming] object WriteAheadLogUtils extends Logging {
  val RECEIVER_WAL_ENABLE_CONF_KEY = "spark.streaming.receiver.writeAheadLog.enable"
  val RECEIVER_WAL_CLASS_CONF_KEY = "spark.streaming.receiver.writeAheadLog.class"
  val RECEIVER_WAL_ROLLING_INTERVAL_CONF_KEY =
    "spark.streaming.receiver.writeAheadLog.rollingIntervalSecs"
  val RECEIVER_WAL_MAX_FAILURES_CONF_KEY = "spark.streaming.receiver.writeAheadLog.maxFailures"
  val RECEIVER_WAL_CLOSE_AFTER_WRITE_CONF_KEY =
    "spark.streaming.receiver.writeAheadLog.closeFileAfterWrite"

  val DRIVER_WAL_CLASS_CONF_KEY = "spark.streaming.driver.writeAheadLog.class"
  val DRIVER_WAL_ROLLING_INTERVAL_CONF_KEY =
    "spark.streaming.driver.writeAheadLog.rollingIntervalSecs"
  val DRIVER_WAL_MAX_FAILURES_CONF_KEY = "spark.streaming.driver.writeAheadLog.maxFailures"
  val DRIVER_WAL_BATCHING_CONF_KEY = "spark.streaming.driver.writeAheadLog.allowBatching"
  val DRIVER_WAL_BATCHING_TIMEOUT_CONF_KEY = "spark.streaming.driver.writeAheadLog.batchingTimeout"
  val DRIVER_WAL_CLOSE_AFTER_WRITE_CONF_KEY =
    "spark.streaming.driver.writeAheadLog.closeFileAfterWrite"

  val DEFAULT_ROLLING_INTERVAL_SECS = 60
  val DEFAULT_MAX_FAILURES = 3

  def enableReceiverLog(conf: SparkConf): Boolean = {
    conf.getBoolean(RECEIVER_WAL_ENABLE_CONF_KEY, false)
  }
4.  例如socketTextStream源码如下:
/**
 * Create a input stream from TCP source hostname:port. Data is received using
 * a TCP socket and the receive bytes is interpreted as UTF8 encoded `\\n` delimited
 * lines.
 * @param hostname      Hostname to connect to for receiving data
 * @param port          Port to connect to for receiving data
 * @param storageLevel  Storage level to use for storing the received objects
 *                      (default: StorageLevel.MEMORY_AND_DISK_SER_2)
 */
def socketTextStream(
    hostname: String,
    port: Int,
//初始化了storageLevel
    storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
  ): ReceiverInputDStream[String] = withNamedScope("socket text stream") {
  socketStream[String](hostname, port, SocketReceiver.bytesToLines, storageLevel)
5.  BlockManagerBasedBlockHandler源码如下:
/**
 * Implementation of a [[org.apache.spark.streaming.receiver.ReceivedBlockHandler]] which
 * stores the received blocks into a block manager with the specified storage level.
 */
private[streaming] class BlockManagerBasedBlockHandler(
    blockManager: BlockManager, storageLevel: StorageLevel)
  extends ReceivedBlockHandler with Logging {

  def storeBlock(blockId: StreamBlockId, block: ReceivedBlock): ReceivedBlockStoreResult = {

    var numRecords = None: Option[Long]

    val putResult: Seq[(BlockId, BlockStatus)] = block match {
      case ArrayBufferBlock(arrayBuffer) =>
        numRecords = Some(arrayBuffer.size.toLong)
        blockManager.putIterator(blockId, arrayBuffer.iterator, storageLevel,
          tellMaster = true)
      case IteratorBlock(iterator) =>
        val countIterator = new CountingIterator(iterator)
        val putResult = blockManager.putIterator(blockId, countIterator, storageLevel,
          tellMaster = true)
        numRecords = countIterator.count
        putResult
      case ByteBufferBlock(byteBuffer) =>
        blockManager.putBytes(blockId, byteBuffer, storageLevel, tellMaster = true)
      case o =>
        throw new SparkException(
          s"Could not store $blockId to block manager, unexpected block type ${o.getClass.getName}")
    }
    if (!putResult.map { _._1 }.contains(blockId)) {
      throw new SparkException(
        s"Could not store $blockId to block manager with storage level $storageLevel")
    }
    BlockManagerBasedStoreResult(blockId, numRecords)
  }

  def cleanupOldBlocks(threshTime: Long) {
    // this is not used as blocks inserted into the BlockManager are cleared by DStream's clearing
    // of BlockRDDs.
  }
}
6.  具体实现是通过putIterator。
def putIterator(
    blockId: BlockId,
    values: Iterator[Any],
    level: StorageLevel,
    tellMaster: Boolean = true,
    effectiveStorageLevel: Option[StorageLevel] = None): Seq[(BlockId, BlockStatus)] = {
  require(values != null, "Values is null")
  doPut(blockId, IteratorValues(values), level, tellMaster, effectiveStorageLevel)
}
7.  doPut源码如下:
// If we're storing bytes, then initiate the replication before storing them locally.
// This is faster as data is already serialized and ready to send.
val replicationFuture = data match {
  case b: ByteBufferValues if putLevel.replication > 1 =>
    // Duplicate doesn't copy the bytes, but just creates a wrapper
    val bufferView = b.buffer.duplicate()
    Future {
      // This is a blocking action and should run in futureExecutionContext which is a cached
      // thread pool}
//通过replicate将数据备份到其他节点上。
      replicate(blockId, bufferView, putLevel)
    }(futureExecutionContext)
  case _ => null
}
8.  replicate源码如下:把数据备份到另一个节点。
/**
 * Replicate block to another node. Not that this is a blocking call that returns after
 * the block has been replicated.
 */
private def replicate(blockId: BlockId, data: ByteBuffer, level: StorageLevel): Unit = {
  val maxReplicationFailures = conf.getInt("spark.storage.maxReplicationFailures", 1)
  val numPeersToReplicateTo = level.replication - 1
  val peersForReplication = new ArrayBuffer[BlockManagerId]
  val peersReplicatedTo = new ArrayBuffer[BlockManagerId]
  val peersFailedToReplicateTo = new ArrayBuffer[BlockManagerId]
  val tLevel = StorageLevel(
    level.useDisk, level.useMemory, level.useOffHeap, level.deserialized, 1)
  val startTime = System.currentTimeMillis
  val random = new Random(blockId.hashCode)

WAL方式
1. 干其他事情之前写入log日志中。将此日志写入目录下,也就是checkpoint目录下。如果作业失败的话,可以基于此日志进行恢复。

private val receivedBlockHandler: ReceivedBlockHandler = {
  if (WriteAheadLogUtils.enableReceiverLog(env.conf)) {
    if (checkpointDirOption.isEmpty) {
      throw new SparkException(
        "Cannot enable receiver write-ahead log without checkpoint directory set. " +
          "Please use streamingContext.checkpoint() to set the checkpoint directory. " +
          "See documentation for more details.")
    }
//因为可能有好几个receiver,所以这里需要streamId.
    new WriteAheadLogBasedBlockHandler(env.blockManager, receiver.streamId,
      receiver.storageLevel, env.conf, hadoopConf, checkpointDirOption.get)
  } else {
//而BlockManager是基于RDD容错的,所以就不需要了。
    new BlockManagerBasedBlockHandler(env.blockManager, receiver.storageLevel)
  }
}
2.  ReceivedBlockHandler源码如下:实现了ReceiverBlockHandler
/**
 * Implementation of a [[org.apache.spark.streaming.receiver.ReceivedBlockHandler]] which
 * stores the received blocks in both, a write ahead log and a block manager.
 */
private[streaming] class WriteAheadLogBasedBlockHandler(
    blockManager: BlockManager,
    streamId: Int,
    storageLevel: StorageLevel,
    conf: SparkConf,
    hadoopConf: Configuration,
    checkpointDir: String,
    clock: Clock = new SystemClock
  ) extends ReceivedBlockHandler with Logging {
3.  使用WAL,就没必要将replication变成2份。WAL是写到checkpoint目录中,而checkpoint是保持在HDFS中,HDFS默认是3份副本。
private val effectiveStorageLevel = {
  if (storageLevel.deserialized) {
    logWarning(s"Storage level serialization ${storageLevel.deserialized} is not supported when" +
      s" write ahead log is enabled, change to serialization false")
  }
  if (storageLevel.replication > 1) {
    logWarning(s"Storage level replication ${storageLevel.replication} is unnecessary when " +
      s"write ahead log is enabled, change to replication 1")
  }
4.  存储数据的时候是同时往WAL和BlockManager中放数据。
/**
 * This implementation stores the block into the block manager as well as a write ahead log.
 * It does this in parallel, using Scala Futures, and returns only after the block has
 * been stored in both places.
 */
def storeBlock(blockId: StreamBlockId, block: ReceivedBlock): ReceivedBlockStoreResult = {

  var numRecords = None: Option[Long]
  // Serialize the block so that it can be inserted into both
  val serializedBlock = block match {
    case ArrayBufferBlock(arrayBuffer) =>
      numRecords = Some(arrayBuffer.size.toLong)
      blockManager.dataSerialize(blockId, arrayBuffer.iterator)
    case IteratorBlock(iterator) =>
      val countIterator = new CountingIterator(iterator)
      val serializedBlock = blockManager.dataSerialize(blockId, countIterator)
      numRecords = countIterator.count
      serializedBlock
    case ByteBufferBlock(byteBuffer) =>
      byteBuffer
    case _ =>
      throw new Exception(s"Could not push $blockId to block manager, unexpected block type")
  }
5.  然后将数据存储到BlockManager中。
// Store the block in block manager
val storeInBlockManagerFuture = Future {
  val putResult =
    blockManager.putBytes(blockId, serializedBlock, effectiveStorageLevel, tellMaster = true)
  if (!putResult.map { _._1 }.contains(blockId)) {
    throw new SparkException(
      s"Could not store $blockId to block manager with storage level $storageLevel")
  }
}
6.  使用write方法写入到log中
// Store the block in write ahead log
val storeInWriteAheadLogFuture = Future {
//block本身要可序列化。
  writeAheadLog.write(serializedBlock, clock.getTimeMillis())
}
7.  WAL写数据的时候是顺序写,数据不可修改,所以读的时候只需要按照指针(也就是要读的record在那,长度是多少)读即可。所以WAL的速度非常快。
/**
 * :: DeveloperApi ::
 *
 * This abstract class represents a write ahead log (aka journal) that is used by Spark Streaming
 * to save the received data (by receivers) and associated metadata to a reliable storage, so that
 * they can be recovered after driver failures. See the Spark documentation for more information
 * on how to plug in your own custom implementation of a write ahead log.
 */
@org.apache.spark.annotation.DeveloperApi
public abstract class WriteAheadLog {
Record handle包含了所有的读和写所必要信息,时间作为索引
  /**
   * Write the record to the log and return a record handle, which contains all the information
   * necessary to read back the written record. The time is used to the index the record,
   * such that it can be cleaned later. Note that implementations of this abstract class must
   * ensure that the written data is durable and readable (using the record handle) by the
   * time this function returns.
   */
// WriteAheadLogRecordHandle使用该句柄读取数据
  abstract public WriteAheadLogRecordHandle write(ByteBuffer record, long time);

  /**
   * Read a written record based on the given record handle.
   */
  abstract public ByteBuffer read(WriteAheadLogRecordHandle handle);


  /**
   * Read and return an iterator of all the records that have been written but not yet cleaned up.
   */
  abstract public Iterator<ByteBuffer> readAll();

  /**
   * Clean all the records that are older than the threshold time. It can wait for
   * the completion of the deletion.
   */
//清除过时的目录
  abstract public void clean(long threshTime, boolean waitForCompletion);

  /**
   * Close this log and release any resources.
   */
  abstract public void close();
}

8.  WriteAheadLogRecordHandle的实现是FileBasedWriteAheadLogSegment.

这里写图片描述
9. Path: 在哪个目录下,offset:索引,length:长度,基于此就可以索引到数据的位置。

/** Class for representing a segment of data in a write ahead log file */
private[streaming] case class FileBasedWriteAheadLogSegment(path: String, offset: Long, length: Int)
  extends WriteAheadLogRecordHandle
10. WriteAheadLog的实现如下:

这里写图片描述
11. FileBasedWriteAheadLog管理WAL文件。

/**
 * This class manages write ahead log files.
 *
 *  - Writes records (bytebuffers) to periodically rotating log files.
 *  - Recovers the log files and the reads the recovered records upon failures.
 *  - Cleans up old log files.
 *
 * Uses [[org.apache.spark.streaming.util.FileBasedWriteAheadLogWriter]] to write
 * and [[org.apache.spark.streaming.util.FileBasedWriteAheadLogReader]] to read.
 *
 * @param logDirectory Directory when rotating log files will be created.
 * @param hadoopConf Hadoop configuration for reading/writing log files.
 */
private[streaming] class FileBasedWriteAheadLog(
12. 直接将数据写入到HDFS的checkpoint
/**
 * Write a byte buffer to the log file. This method synchronously writes the data in the
 * ByteBuffer to HDFS. When this method returns, the data is guaranteed to have been flushed
 * to HDFS, and will be available for readers to read.
 */
def write(byteBuffer: ByteBuffer, time: Long): FileBasedWriteAheadLogSegment = synchronized {
  var fileSegment: FileBasedWriteAheadLogSegment = null
  var failures = 0
  var lastException: Exception = null
  var succeeded = false
  while (!succeeded && failures < maxFailures) {
    try {
// getLogWriter获得Writer
      fileSegment = getLogWriter(time).write(byteBuffer)
      if (closeFileAfterWrite) {
        resetWriter()
      }
      succeeded = true
    } catch {
      case ex: Exception =>
        lastException = ex
        logWarning("Failed to write to write ahead log")
        resetWriter()
        failures += 1
    }
  }
  if (fileSegment == null) {
    logError(s"Failed to write to write ahead log after $failures failures")
    throw lastException
  }
  fileSegment
}
13. 不同时间不同条件下,会写入到不同的文件中,会有很多小文件。
/** Get the current log writer while taking care of rotation */
private def getLogWriter(currentTime: Long): FileBasedWriteAheadLogWriter = synchronized {
  if (currentLogWriter == null || currentTime > currentLogWriterStopTime) {
    resetWriter()
    currentLogPath.foreach {
      pastLogs += LogInfo(currentLogWriterStartTime, currentLogWriterStopTime, _)
    }
    currentLogWriterStartTime = currentTime
    currentLogWriterStopTime = currentTime + (rollingIntervalSecs * 1000)
    val newLogPath = new Path(logDirectory,
      timeToLogFile(currentLogWriterStartTime, currentLogWriterStopTime))
    currentLogPath = Some(newLogPath.toString)
    currentLogWriter = new FileBasedWriteAheadLogWriter(currentLogPath.get, hadoopConf)
  }
  currentLogWriter
}
14. Read部分
/**
 * A random access reader for reading write ahead log files written using
 * [[org.apache.spark.streaming.util.FileBasedWriteAheadLogWriter]]. Given the file segment info,
 * this reads the record (ByteBuffer) from the log file.
 */
private[streaming] class FileBasedWriteAheadLogRandomReader(path: String, conf: Configuration)
  extends Closeable {

  private val instream = HdfsUtils.getInputStream(path, conf)
  private var closed = (instream == null) // the file may be deleted as we're opening the stream

  def read(segment: FileBasedWriteAheadLogSegment): ByteBuffer = synchronized {
//先找到指针索引
    assertOpen()
    instream.seek(segment.offset)
    val nextLength = instream.readInt()
    HdfsUtils.checkState(nextLength == segment.length,
      s"Expected message length to be ${segment.length}, but was $nextLength")
    val buffer = new Array[Byte](nextLength)
    instream.readFully(buffer)
    ByteBuffer.wrap(buffer)
  }

支持数据存放。在实际的开发中直接使用Kafka,因为不需要容错,也不需要副本。
Kafka有Receiver方式和Direct方式
Receiver方式:是交给Zookeeper去管理数据的,也就是偏移量offSet.如果失效后,Kafka会基于offSet重新读取,因为处理数据的时候中途崩溃,不会给Zookeeper发送ACK,此时Zookeeper认为你并没有消息这个数据。但是在实际中越来用的越多的是Direct的方式直接操作offSet.而且还是自己管理offSet.

  1. DirectKafkaInputDStream会去查看最新的offSet,并且把offSet放到Batch中。
  2. 在Batch每次生成的时候都会调用latestLeaderOffsets查看最近的offSet,此时的offSet就会与上一个offSet相减获得这个Batch的范围。这样就可以知道读那些数据。
protected final def latestLeaderOffsets(retries: Int): Map[TopicAndPartition, LeaderOffset] = {
  val o = kc.getLatestLeaderOffsets(currentOffsets.keySet)
  // Either.fold would confuse @tailrec, do it manually
  if (o.isLeft) {
    val err = o.left.get.toString
    if (retries <= 0) {
      throw new SparkException(err)
    } else {
      log.error(err)
      Thread.sleep(kc.config.refreshLeaderBackoffMs)
      latestLeaderOffsets(retries - 1)
    }
  } else {
    o.right.get
  }
}

以上是关于第12课:Spark Streaming源码解读之Executor容错安全性的主要内容,如果未能解决你的问题,请参考以下文章

第12课:Spark Streaming源码解读之Executor容错安全性

(版本定制)第12课:Spark Streaming源码解读之Executor容错安全性

第13课:Spark Streaming源码解读之Driver容错安全性

(版本定制)第14课:Spark Streaming源码解读之State管理之updateStateByKey和mapWithState解密

第13课:Spark Streaming源码解读之Driver容错安全性

第16课:Spark Streaming源码解读之数据清理内幕彻底解密