单源最短路径

Posted 尹松

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了单源最短路径相关的知识,希望对你有一定的参考价值。

  1、问题描述

     给定带权有向图G =(V,E),其中每条边的权是非负实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到所有其他各顶点的最短路长度。这里路的长度是指路上各边权之和。这个问题通常称为单源最短路径问题。

    2、Dijkstra算法

     Dijkstra算法是解单源最短路径问题的贪心算法。
    其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其他顶点之间的最短路径长度。

    Dijkstra算法可描述如下,其中输入带权有向图是G=(V,E),V={1,2,…,n},顶点v是源。c是一个二维数组,c[i][j]表示边(i,j)的权。当(i,j)不属于E时,c[i][j]是一个大数。dist[i]表示当前从源到顶点i的最短特殊路径长度。在Dijkstra算法中做贪心选择时,实际上是考虑当S添加u之后,可能出现一条到顶点的新的特殊路,如果这条新特殊路是先经过老的S到达顶点u,然后从u经过一条边直接到达顶点i,则这种路的最短长度是dist[u]+c[u][i]。如果dist[u]+c[u][i]<dist[i],则需要更新dist[i]的值。步骤如下:

   (1) 用带权的邻接矩阵c来表示带权有向图, c[i][j]表示弧<vi,vj>上的权值。设S为已知最短路径的终点的集合,它的初始状态为空集。从源点v经过S到图上其余各点vi的当前最短路径长度的初值为:dist[i]=c[v][i], vi属于V.
   (2) 选择vu, 使得dist[u]=Min{dist[i] | vi属于V-S},vj就是长度最短的最短路径的终点。令S=S U {u}.

   (3) 修改从v到集合V-S上任一顶点vi的当前最短路径长度:如果 dist[u]+c[u][j]< dist[j] 则修改 dist[j]= dist[u]+c[u][j]. 
   (4) 重复操作(2),(3)共n-1次.

算法具体实现如下 

#include<iostream>
#include<stdlib.h>
#include<stdio.h>
using namespace std;
#define N 5
#define M 10000

template<class Type> 
void Dijkstra(int n,int v,Type dist[],int prev[],Type c[][N+1]) 

bool s[N+1]; 
for(int i1=1; i1<=n; i1++) 

dist[i1] = c[v][i1]; 
s[i1] = false; 

if(dist[i1] == M) 

prev[i1] = 0;

else 

prev[i1] = v; 



dist[v] = 0; 
s[v] = true; 

for(int i=1; i<n; i++) 

int temp = M; 
int u = v;


for(int k=1; k<=n; k++) 

if((!s[k]) && (dist[k]<temp)) 

u = k; 
temp = dist[k]; 


s[u] = true; 


for(int j=1; j<=n; j++) 

if((!s[j]) && (c[u][j]<M)) 

Type newdist = dist[u] + c[u][j]; 
if(newdist < dist[j]) 

dist[j] = newdist; 
prev[j] = u; 







void Traceback(int v,int i,int prev[]) 

if(v == i) 

cout<<i; 
return; 

Traceback(v,prev[i],prev); 
cout<<"->"<<i; 
}

int main() 

int v = 1; 
int dist[N+1],prev[N+1],c[N+1][N+1]; 

cout<<"有向图权的矩阵为:"<<endl; 
for(int i=1; i<=N; i++) 

for(int j=1; j<=N; j++) 

cin>>c[i][j]; 

cout<<endl; 


Dijkstra(N,v,dist,prev,c); 

for(int j=2; j<=N; j++) 

cout<<"源点1到点"<<j<<"的最短路径长度为:"<<dist[j]<<",其路径为"; 
Traceback(1,j,prev); 
cout<<endl; 


return 0; 

以上是关于单源最短路径的主要内容,如果未能解决你的问题,请参考以下文章

单源最短路径

Bellman-ford 单源最短路径算法

Dijkstra求解单源最短路径

单源最短路径Dijkstra算法

模板单源最短路径(标准版)

贪心算法(Dijkstra)解决单源最短路径问题(C++)