bzoj 2212[POI2011]ROT-Tree Rotations - 线段树合并

Posted 大财主

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bzoj 2212[POI2011]ROT-Tree Rotations - 线段树合并相关的知识,希望对你有一定的参考价值。

2212: [Poi2011]Tree Rotations

Time Limit: 20 Sec  Memory Limit: 259 MB

Description

Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch - the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves‘ labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An). 技术分享图片 The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar‘s tree that can be obtained by rotations.

现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

 

Input

In the first line of the standard input there is a single integer (2< = N < = 200000) that denotes the number of leaves in Byteasar‘s tree. Next, the description of the tree follows. The tree is defined recursively: if there is a leaf labelled with ()(1<=P<=N) at the end of the trunk (i.e., the branch from which the tree stems), then the tree‘s description consists of a single line containing a single integer , if there is a bifurcation at the end of the trunk, then the tree‘s description consists of three parts: the first line holds a single number , then the description of the left subtree follows (as if the left branch forking out of the bifurcation was its trunk), and finally the description of the right subtree follows (as if the right branch forking out of the bifurcation was its trunk).

第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x

1<=n<=200000

 

Output

In the first and only line of the standard output a single integer is to be printed: the minimum number of inversions in the corona of the input tree that can be obtained by a sequence of rotations.

一行,最少逆序对个数

 

Sample Input

3
0
0
3
1
2

Sample Output

1
 
 
递归处理
一棵树的两个儿子只有两种情况,选小的即可
之后将两个儿子合并
 
技术分享图片
  1 #include <iostream>
  2 #include <cstdio>
  3 #include <cstring>
  4 #include <algorithm>
  5 #define LL long long
  6 #define lc seg[x].ch[0]
  7 #define rc seg[x].ch[1] 
  8 
  9 using namespace std;
 10 
 11 const int MAXN = 2e5 + 10;
 12 
 13 int N;
 14 int cnt = 0;
 15 LL ans = 0;
 16 LL cnt1 = 0, cnt2 = 0;
 17 struct segment {
 18     int ch[2];
 19     LL sum;
 20 } seg[MAXN * 20];
 21 
 22 inline LL read()
 23 {
 24     LL x = 0, w = 1; char ch = 0;
 25     while(ch < 0 || ch > 9) {
 26         if(ch == -) {
 27             w = -1;
 28         }
 29         ch = getchar();
 30     }
 31     while(ch >= 0 && ch <= 9) {
 32         x = x * 10 + ch - 0;
 33         ch = getchar();
 34     }
 35     return x * w;
 36 }
 37 
 38 void pushup(int x)
 39 {
 40     seg[x].sum = seg[lc].sum + seg[rc].sum;
 41 }
 42 
 43 void insert(int u, int l, int r, int &x)
 44 {
 45     if(x == 0) {
 46         x = ++cnt;
 47     }
 48     if(l == r) {
 49         seg[x].sum++;
 50         return;
 51     }
 52     int mid = (l + r) >> 1;
 53     if(u <= mid) {
 54         insert(u, l, mid, lc);
 55     } else {
 56         insert(u, mid + 1, r, rc);
 57     }
 58     pushup(x);
 59 }
 60 
 61 int merge(int x, int y, int l, int r)
 62 {
 63     if(x == 0 || y == 0) {
 64         return x + y;
 65     }
 66     if(l == r) {
 67         seg[x].sum += seg[y].sum;
 68         return x;
 69     }
 70     int mid = (l + r) >> 1;
 71     cnt1 += seg[seg[x].ch[1]].sum * seg[seg[y].ch[0]].sum;
 72     cnt2 += seg[seg[y].ch[1]].sum * seg[seg[x].ch[0]].sum;
 73     lc = merge(seg[x].ch[0], seg[y].ch[0], l, mid);
 74     rc = merge(seg[x].ch[1], seg[y].ch[1], mid + 1, r);
 75     pushup(x);
 76     return x;
 77 }
 78 
 79 void print(int x, int l, int r)
 80 {
 81     cout<<x<<" "<<l<<" "<<r<<" "<<seg[x].ch[0]<<" "<<seg[x].ch[1]<<" "<<seg[x].sum<<endl;
 82     int mid = (l + r) >> 1;
 83     if(lc) {
 84         print(lc, l, mid);
 85     }
 86     if(rc) {
 87         print(rc, mid + 1, r);
 88     }
 89 }
 90 
 91 int build()
 92 {
 93     int num = read();
 94     if(num == 0) {
 95         int root;
 96         int l = build(), r = build();
 97         cnt1 = 0, cnt2 = 0;
 98         /*print(l, 1, N);
 99         cout<<endl;
100         print(r, 1, N);
101         cout<<endl;*/
102         root = merge(l, r, 1, N);
103         ans += min(cnt1, cnt2);
104         /*cout<<l<<" "<<r<<" "<<root<<endl;
105         print(root, 1, N);
106         cout<<endl;*/
107         return root;
108     } else {
109         int root = 0;
110         insert(num, 1, N, root);
111         return root;
112     }
113 }
114 
115 int main()
116 {
117     N = read();
118     build();
119     printf("%lld\n", ans);
120     return 0;
121 }
View Code

 












以上是关于bzoj 2212[POI2011]ROT-Tree Rotations - 线段树合并的主要内容,如果未能解决你的问题,请参考以下文章

BZOJ_2212_[Poi2011]Tree Rotations_线段树合并

bzoj2212 [Poi2011]Tree Rotations 线段树合并

bzoj 2212[POI2011]ROT-Tree Rotations - 线段树合并

BZOJ 2212 [Poi2011]Tree Rotations

bzoj 2212 : [Poi2011]Tree Rotations (线段树合并)

[bzoj2212][Poi2011]Tree Rotations