P3153 [CQOI2009]跳舞

Posted five20

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P3153 [CQOI2009]跳舞相关的知识,希望对你有一定的参考价值。

题目描述

一次舞会有n个男孩和n个女孩。每首曲子开始时,所有男孩和女孩恰好配成n对跳交谊舞。每个男孩都不会和同一个女孩跳两首(或更多)舞曲。有一些男孩女孩相互喜欢,而其他相互不喜欢(不会”单向喜欢“)。每个男孩最多只愿意和k个不喜欢的女孩跳舞,而每个女孩也最多只愿意和k个不喜欢的男孩跳舞。给出每对男孩女孩是否相互喜欢的信息,舞会最多能有几首舞曲?

输入输出格式

输入格式:

第一行包含两个整数n和k。以下n行每行包含n个字符,其中第i行第j个字符为‘Y‘当且仅当男孩i和女孩j相互喜欢。

输出格式:

仅一个数,即舞曲数目的最大值。

输入输出样例

输入样例#1: 
3 0
YYY
YYY
YYY
输出样例#1: 
3

说明

N<=50 K<=30

 

Solution:

  本题太毒,调了几天,终于又填完坑了~

  像这种需要配对,而且数据还这么小的题目,一眼就容易想到网络最大流。

  那么如果直接去跑最大流的话,显然不可行。

  题意中说相同的两个人只能搭配一次,那么最多也就$50$次,很容易想到从大到小枚举天数然后跑最大流判断(我写了下枚举+最大流,事实证明是可以过的),但是,本题有很明显的单调性,即若前$i$天可以完整搭配,则答案一定在$[i,n]$之间,否则就在$[0,i-1]$之间。于是考虑二分答案,然后跑最大流$check$。

  再来考虑最大流$check$是否可行。每个男生的点和女生的点相匹配,只有两种情况,要么不互相喜欢使用$1$次限制,要么互相喜欢不需要花费。

  因为每人最多和不喜欢的匹配$k$次,于是我们将每个学生都拆成两个点,之间连边为$k$表示限制,假设男生$a$被拆为$a1,a2$($a1$是$a$的全局,$a2$是与$a$不互相喜欢的分点),女生$b$被拆为$b1,b2$(类比男生的含义),每次二分的天数$x$,重新建图:$s\rightarrow a1$连容量为$x$($s$为源点,该边表示每个人应该匹配$x$次),$a1\rightarrow a2$连容量为$k$(表示$a$最多和$k$个不喜欢的女生匹配),$b1,b2$类比男生连法($b2\rightarrow b1\;\;b1\rightarrow t$)。每次若男生$a$和女生$b$不喜欢,连容量为$1$的边$a2\rightarrow b2$,若$a$和$b$互相喜欢,则应直接连容量为$1$的边$a1\rightarrow b1$。

  然后每次跑完最大流后,看最大流是否等于$x*n$,便能判断是否成立。(最后需要注意的是二分的边界值:$l=0,r=n$,最少就是$1$次也无法搭配,最多就是$n$人互相搭配一次)

代码:

 1 #include<bits/stdc++.h>
 2 #define il inline
 3 #define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
 4 #define Min(a,b) ((a)>(b)?(b):(a))
 5 #define debug printf("%d %s\n",__LINE__,__FUNCTION__)
 6 using namespace std;
 7 const int N=100005,inf=23333333;
 8 int s,t=5200,ans,dis[10005],n,k,to[N],net[N],h[10010],cnt=1,w[N];
 9 bool mp[55][55];
10 
11 il void add(int u,int v,int c){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt,w[cnt]=c;}
12 
13 il bool bfs(){
14     queue<int>q;
15     memset(dis,-1,sizeof(dis));
16     q.push(s),dis[s]=0;
17     while(!q.empty()){
18         int u=q.front();q.pop();
19         for(int i=h[u];i;i=net[i])
20             if(dis[to[i]]==-1&&w[i]>0)dis[to[i]]=dis[u]+1,q.push(to[i]);
21     }
22     return dis[t]!=-1;
23 }
24 
25 il int dfs(int u,int op){
26     if(u==t)return op;
27     int flow=0,used=0;
28     for(int i=h[u];i;i=net[i]){
29         int v=to[i];
30         if(dis[v]==dis[u]+1&&w[i]>0){
31             used=dfs(v,Min(w[i],op));
32             if(!used)continue;
33             flow+=used,op-=used;
34             w[i]-=used,w[i^1]+=used;
35             if(!op)break;
36         }
37     }
38     if(!flow)dis[u]=-1;
39     return flow;
40 }
41 
42 il bool check(int x){  
43     memset(h,0,sizeof(h));
44     cnt=1;
45     For(i,1,n){
46         add(s,i,x),add(i,s,0);
47         add(i,i+n,k),add(i+n,i,0);
48         add(i+n*3,t,x),add(t,i+n*3,0);
49         add(i+n*2,i+n*3,k),add(i+n*3,i+n*2,0);
50     }
51     For(i,1,n) For(j,1,n){
52         if(mp[i][j])add(i,j+3*n,1),add(j+3*n,i,0);
53         else add(i+n,j+2*n,1),add(j+2*n,i+n,0);
54     }
55     int tot=0;
56     while(bfs())tot+=dfs(s,inf);
57     if(tot==n*x)return 1;
58     return 0;
59 }
60 
61 int main(){
62     ios::sync_with_stdio(0);
63     cin>>n>>k;
64     char p;
65     For(i,1,n) For(j,1,n) {
66         cin>>p;
67         if(p==Y)mp[i][j]=1;
68         if(n==1&&(p==Y||k>=1)){cout<<1;return 0;}
69     }
70     int mid,l=0,r=n;
71     while(l<=r){
72         mid=l+r>>1;
73         if(check(mid))l=mid+1,ans=mid;
74         else r=mid-1;
75     }
76     cout<<ans;
77     return 0;
78 }

 

 

 

以上是关于P3153 [CQOI2009]跳舞的主要内容,如果未能解决你的问题,请参考以下文章

luogu P3153 [CQOI2009]跳舞

P3153 [CQOI2009]跳舞 二分网络流

luogu P3153 [CQOI2009]跳舞 |网络流最大流

luogu P3153 [CQOI2009]跳舞 |网络流最大流

bzoj 1305: [CQOI2009]dance跳舞

bzoj1305: [CQOI2009]dance跳舞