tensorflow进阶篇-5(反向传播2)
Posted 每天学习一点点
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorflow进阶篇-5(反向传播2)相关的知识,希望对你有一定的参考价值。
上面是一个简单的回归算法,下面是一个简单的二分值分类算法。从两个正态分布(N(-1,1)和N(3,1))生成100个数。所有从正态分布N(-1,1)生成的数据目标0;从正态分布N(3,1)生成的数据标为目标类1,模型算法通过sigmoid函数将这些生成的数据转换成目标类数据。换句话讲,模型算法是sigmoid(x+A),其中,A是要拟合的变量,理论上A=-1。假设,两个正态分布的均值分别是m1和m2,则达到A的取值时,它们通过-(m1+m2)/2转换成到0等距离的值。
实现如下:
import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.python.framework import ops ops.reset_default_graph() # 创建计算图 sess = tf.Session() # 生成数据,100个随机数x_vals:50个(-1,1)之间的随机数和50个(1,3)之间的随机数 # 以及100个目标数y_vals:50个0、50个1 x_vals = np.concatenate((np.random.normal(-1, 1, 50), np.random.normal(3, 1, 50))) y_vals = np.concatenate((np.repeat(0., 50), np.repeat(1., 50))) # 声明x_data、target占位符 x_data = tf.placeholder(shape=[1], dtype=tf.float32) y_target = tf.placeholder(shape=[1], dtype=tf.float32) # 声明变量A,(初始值为10附近,远离理论值-1) A = tf.Variable(tf.random_normal(mean=10, shape=[1])) # 实现sigmoid(x_data+A),这里不必封装sigmoid函数,损失函数中会自动实现 my_output = tf.add(x_data, A) # 为my_output、y_target添加一个维度 my_output_expanded = tf.expand_dims(my_output, 0) y_target_expanded = tf.expand_dims(y_target, 0) # 初始化所有变量 init = tf.initialize_all_variables() sess.run(init) # 添加损失函数,Sigmoid交叉熵损失函数。 # L = -actual * (log(sigmoid(pred))) - (1-actual)(log(1-sigmoid(pred))) # or # L = max(actual, 0) - actual * pred + log(1 + exp(-abs(actual))) xentropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output_expanded,labels= y_target_expanded) # 声明变量的优化器 my_opt = tf.train.GradientDescentOptimizer(0.05) train_step = my_opt.minimize(xentropy) # 训练,将损失值加入数组loss_batch loss_batch = [] for i in range(1400): rand_index = np.random.choice(100) rand_x = [x_vals[rand_index]] rand_y = [y_vals[rand_index]] sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) target=sess.run(xentropy, feed_dict={x_data: rand_x, y_target: rand_y}) print(\'Step #\' + str(i + 1) + \' A = \' + str(sess.run(A))) print(\'Loss = \' + str(target)) loss_batch.append(float(target)) plt.plot( loss_batch, \'r--\', label=\'Back Propagation\') plt.legend(loc=\'upper right\', prop={\'size\': 11}) plt.show() # 评估预测 predictions = [] for i in range(len(x_vals)): x_val = [x_vals[i]] prediction = sess.run(tf.round(tf.sigmoid(my_output)), feed_dict={x_data: x_val}) predictions.append(prediction[0]) accuracy = sum(x == y for x, y in zip(predictions, y_vals)) / 100. print(\'Ending Accuracy = \' + str(np.round(accuracy, 2)))
输出结果:
Step #1 A = [ 9.38409519]
Loss = [[ 8.86125183]]
Step #2 A = [ 9.38409519]
Loss = [[ 2.55701457e-06]]
.........
Step #1398 A = [-1.09940839]
Loss = [[ 1.60983551]]
Step #1399 A = [-1.09107065]
Loss = [[ 0.18104036]]
Step #1400 A = [-1.10927427]
Loss = [[ 0.44608194]]
Ending Accuracy = 0.96
对于损失函数看这里:tensorflow进阶篇-4(损失函数1),tensorflow进阶篇-4(损失函数2),tensorflow进阶篇-4(损失函数3)
以上是关于tensorflow进阶篇-5(反向传播2)的主要内容,如果未能解决你的问题,请参考以下文章
[2] TensorFlow 向前传播算法(forward-propagation)与反向传播算法(back-propagation)
TensorFlow从0到1之TensorFlow实现反向传播算法(21)
TensorFlow从0到1之TensorFlow实现反向传播算法(21)