pandas重新索引
Posted 棍子哥
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pandas重新索引相关的知识,希望对你有一定的参考价值。
#重新索引会更改DataFrame的行标签和列标签。重新索引意味着符合数据以匹配特定轴上的一组给定的标签。 #可以通过索引来实现多个操作 - #重新排序现有数据以匹配一组新的标签。 #在没有标签数据的标签位置插入缺失值(NA)标记。 #示例 import pandas as pd import numpy as np N=20 df = pd.DataFrame({ ‘A‘: pd.date_range(start=‘2016-01-01‘,periods=N,freq=‘D‘), ‘x‘: np.linspace(0,stop=N-1,num=N), ‘y‘: np.random.rand(N), ‘C‘: np.random.choice([‘Low‘,‘Medium‘,‘High‘],N).tolist(), ‘D‘: np.random.normal(100, 10, size=(N)).tolist() }) #reindex the DataFrame df_reindexed = df.reindex(index=[0,2,5], columns=[‘A‘, ‘C‘, ‘B‘]) print (df_reindexed) #Python #执行上面示例代码,得到以下结果 - A C B 0 2016-01-01 Low NaN 2 2016-01-03 High NaN 5 2016-01-06 Low NaN #Shell #重建索引与其他对象对齐 #有时可能希望采取一个对象和重新索引,其轴被标记为与另一个对象相同。 考虑下面的例子来理解这一点。 #示例 import pandas as pd import numpy as np df1 = pd.DataFrame(np.random.randn(10,3),columns=[‘col1‘,‘col2‘,‘col3‘]) df2 = pd.DataFrame(np.random.randn(7,3),columns=[‘col1‘,‘col2‘,‘col3‘]) df1 = df1.reindex_like(df2) print df1 #Python #执行上面示例代码,得到以下结果 - col1 col2 col3 0 -2.467652 -1.211687 -0.391761 1 -0.287396 0.522350 0.562512 2 -0.255409 -0.483250 1.866258 3 -1.150467 -0.646493 -0.222462 4 0.152768 -2.056643 1.877233 5 -1.155997 1.528719 -1.343719 6 -1.015606 -1.245936 -0.295275 #Shell #注意 - 在这里,df1数据帧(DataFrame)被更改并重新编号,如df2。 列名称应该匹配,否则将为整个列标签添加NAN。 #填充时重新加注 #reindex()采用可选参数方法,它是一个填充方法,其值如下: #pad/ffill - 向前填充值 #bfill/backfill - 向后填充值 #nearest - 从最近的索引值填充 #示例 import pandas as pd import numpy as np df1 = pd.DataFrame(np.random.randn(6,3),columns=[‘col1‘,‘col2‘,‘col3‘]) df2 = pd.DataFrame(np.random.randn(2,3),columns=[‘col1‘,‘col2‘,‘col3‘]) # Padding NAN‘s print df2.reindex_like(df1) # Now Fill the NAN‘s with preceding Values print ("Data Frame with Forward Fill:") print df2.reindex_like(df1,method=‘ffill‘) #Python #执行上面示例代码时,得到以下结果 - col1 col2 col3 0 1.311620 -0.707176 0.599863 1 -0.423455 -0.700265 1.133371 2 NaN NaN NaN 3 NaN NaN NaN 4 NaN NaN NaN 5 NaN NaN NaN Data Frame with Forward Fill: col1 col2 col3 0 1.311620 -0.707176 0.599863 1 -0.423455 -0.700265 1.133371 2 -0.423455 -0.700265 1.133371 3 -0.423455 -0.700265 1.133371 4 -0.423455 -0.700265 1.133371 5 -0.423455 -0.700265 1.133371 #Shell #注 - 最后四行被填充了。 #重建索引时的填充限制 #限制参数在重建索引时提供对填充的额外控制。限制指定连续匹配的最大计数。考虑下面的例子来理解这个概念 - #示例 import pandas as pd import numpy as np df1 = pd.DataFrame(np.random.randn(6,3),columns=[‘col1‘,‘col2‘,‘col3‘]) df2 = pd.DataFrame(np.random.randn(2,3),columns=[‘col1‘,‘col2‘,‘col3‘]) # Padding NAN‘s print df2.reindex_like(df1) # Now Fill the NAN‘s with preceding Values print ("Data Frame with Forward Fill limiting to 1:") print df2.reindex_like(df1,method=‘ffill‘,limit=1) #Python #在执行上面示例代码时,得到以下结果 - col1 col2 col3 0 0.247784 2.128727 0.702576 1 -0.055713 -0.021732 -0.174577 2 NaN NaN NaN 3 NaN NaN NaN 4 NaN NaN NaN 5 NaN NaN NaN #Data Frame with Forward Fill limiting to 1: col1 col2 col3 0 0.247784 2.128727 0.702576 1 -0.055713 -0.021732 -0.174577 2 -0.055713 -0.021732 -0.174577 3 NaN NaN NaN 4 NaN NaN NaN 5 NaN NaN NaN #Shell #注意 - 只有第7行由前6行填充。 然后,其它行按原样保留。 #重命名 #rename()方法允许基于一些映射(字典或者系列)或任意函数来重新标记一个轴。 #看看下面的例子来理解这一概念。 #示例 import pandas as pd import numpy as np df1 = pd.DataFrame(np.random.randn(6,3),columns=[‘col1‘,‘col2‘,‘col3‘]) print df1 print ("After renaming the rows and columns:") print df1.rename(columns={‘col1‘ : ‘c1‘, ‘col2‘ : ‘c2‘},index = {0 : ‘apple‘, 1 : ‘banana‘, 2 : ‘durian‘}) #Python #执行上面示例代码,得到以下结果 - col1 col2 col3 0 0.486791 0.105759 1.540122 1 -0.990237 1.007885 -0.217896 2 -0.483855 -1.645027 -1.194113 3 -0.122316 0.566277 -0.366028 4 -0.231524 -0.721172 -0.112007 5 0.438810 0.000225 0.435479 #After renaming the rows and columns: c1 c2 col3 apple 0.486791 0.105759 1.540122 banana -0.990237 1.007885 -0.217896 durian -0.483855 -1.645027 -1.194113 3 -0.122316 0.566277 -0.366028 4 -0.231524 -0.721172 -0.112007 5 0.438810 0.000225 0.435479 #Shell #rename()方法提供了一个inplace命名参数,默认为False并复制底层数据。 指定传递inplace = True则表示将数据重命名。
以上是关于pandas重新索引的主要内容,如果未能解决你的问题,请参考以下文章