pandas函数应用
Posted 棍子哥
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pandas函数应用相关的知识,希望对你有一定的参考价值。
1、管道函数
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/5/24 15:03 # @Author : zhang chao # @File : s.py #pipe管道函数的应用 import pandas as pd import numpy as np def adder(ele1,ele2): return ele1+ele2 df = pd.DataFrame(np.random.randn(5,3),columns=[‘col1‘,‘col2‘,‘col3‘]) print(df) df2=df.pipe(adder,2)#df中每一个元素都加2 print(‘-‘*100) print("df.pipe(adder,2) df中每一个元素都加2") print (df2) D:\Download\python3\python3.exe D:/Download/pycharmworkspace/s.py col1 col2 col3 0 -0.541685 -1.009440 -1.680244 1 -0.881437 0.022469 0.911686 2 0.930035 1.073783 0.096894 3 -1.282204 -0.039941 0.147482 4 -1.743847 -1.187832 -0.402219 ---------------------------------------------------------------------------------------------------- df.pipe(adder,2) df中每一个元素都加2 col1 col2 col3 0 1.458315 0.990560 0.319756 1 1.118563 2.022469 2.911686 2 2.930035 3.073783 2.096894 3 0.717796 1.960059 2.147482 4 0.256153 0.812168 1.597781 Process finished with exit code 0
2、
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/5/24 15:03 # @Author : zhang chao # @File : s.py #可以使用apply()方法沿DataFrame或Panel的轴应用任意函数,它与描述性统计方法一样,采用可选的轴参数。 # 默认情况下,操作按列执行,将每列列为数组。 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5,3),columns=[‘col1‘,‘col2‘,‘col3‘]) print (df) print(‘-‘*100) print("df1=df.apply(np.mean)=df.apply(np.mean,axis=0) 默认按列执行操作:") df1=df.apply(np.mean) print (df1) print(‘-‘*100) print("df2=df.apply(np.mean,axis=1) 按行执行操作:") df2=df.apply(np.mean,axis=1) print (df2) print(‘-‘*100) df3=df.apply(lambda x: x.max() - x.min()) print("df3=df.apply(lambda x: x.max() - x.min()):") print (df3) print(‘-‘*100) df4=df[‘col1‘].map(lambda x:x*100) print("df4=df[‘col1‘].map(lambda x:x*100):") print (df4) print(‘-‘*100) df5=df.applymap(lambda x:x*100) print("df5=df.applymap(lambda x:x*100):") print (df5) D:\Download\python3\python3.exe D:/Download/pycharmworkspace/s.py col1 col2 col3 0 0.735342 0.438729 -0.261747 1 -1.490907 0.397943 0.105613 2 -0.298617 -0.328284 0.599502 3 -0.842654 0.324976 -0.047985 4 0.452950 1.102824 0.023971 ---------------------------------------------------------------------------------------------------- df1=df.apply(np.mean)=df.apply(np.mean,axis=0) 默认按列执行操作: col1 -0.288777 col2 0.387238 col3 0.083871 dtype: float64 ---------------------------------------------------------------------------------------------------- df2=df.apply(np.mean,axis=1) 按行执行操作: 0 0.304108 1 -0.329117 2 -0.009133 3 -0.188555 4 0.526582 dtype: float64 ---------------------------------------------------------------------------------------------------- df3=df.apply(lambda x: x.max() - x.min()): col1 2.226249 col2 1.431108 col3 0.861248 dtype: float64 ---------------------------------------------------------------------------------------------------- df4=df[‘col1‘].map(lambda x:x*100): 0 73.534186 1 -149.090744 2 -29.861721 3 -84.265380 4 45.295040 Name: col1, dtype: float64 ---------------------------------------------------------------------------------------------------- df5=df.applymap(lambda x:x*100): col1 col2 col3 0 73.534186 43.872940 -26.174660 1 -149.090744 39.794331 10.561263 2 -29.861721 -32.828359 59.950153 3 -84.265380 32.497553 -4.798542 4 45.295040 110.282391 2.397062 Process finished with exit code 0
以上是关于pandas函数应用的主要内容,如果未能解决你的问题,请参考以下文章