STL空间配置器解析和实现
Posted Fate0729
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了STL空间配置器解析和实现相关的知识,希望对你有一定的参考价值。
STL空间配置器的强大和借鉴作用不言而喻,查阅资料,发现了Dawn_sf已经对其有了极其深入和详细的描述,所以决定偷下懒借用其内容,只提供自己实现STL空间配置器的源码,具体解析内容参考:
(一)STL — 浅析一级空间配置器
(二)STL — 浅析二级空间配置器
1. 一级空间配置器实现
1.1 接口
// 完全解析STL空间配置器 /***** 一级配置区 ****************************/ // 1. 采用mallo/relloc/free申请和释放内存 // 2. 处理内存申请失败的处理 // (1)设置set_new_handle,若为NULL抛出__THROW_BAD_ALLOC; // (2)尝试重复申请 /**********************************************/ #pragma once class CFirstLevelAlloc; class CSecondLevelAlloc; #ifdef _CHUNK_ALLOC typedef CFirstLevelAlloc SelfAlloc; #else typedef CSecondLevelAlloc SelfAlloc; #endif typedef void(*CallBackFunc)(); class CFirstLevelAlloc { public: CFirstLevelAlloc(); static CallBackFunc m_CallBackFunc; static void* Allocate(size_t nSize); static void* Allocate(void *p, size_t nSize); static void Deallocate(void *p, size_t nSize = 0); static void SetCallBackHandle(CallBackFunc cb); private: static void* ReAllocate(size_t nSize); static void* ReAllocate(void *p, size_t nSize); }; enum {ALIGN = 8}; // 小型区块的上调边界 enum {MAX_BYTES = 128}; // 小型区块的上限 enum {FREELISTNUM = MAX_BYTES/ALIGN}; // free-lists个数 // 空闲内存链表结构 union FreeList { union FreeList *pFreeList; char client_data[1]; };
1.2 实现
#include "stdio.h" #include "alloc_define.h" #include <stdlib.h> #include <iostream> using namespace std; CallBackFunc CFirstLevelAlloc::m_CallBackFunc = NULL; CFirstLevelAlloc::CFirstLevelAlloc() { } void* CFirstLevelAlloc::Allocate(size_t nSize) { void *result = malloc(nSize); if (NULL == result) { result = ReAllocate(nSize); } return result; } void* CFirstLevelAlloc::Allocate(void *p, size_t nSize) { void *result = realloc(p, nSize); if (NULL == result) { result = ReAllocate(p, nSize); } return result; } void* CFirstLevelAlloc::ReAllocate(size_t nSize) { while (1) { if (NULL == m_CallBackFunc) { cout << "bad alloc!" << endl; return NULL; } else { m_CallBackFunc(); void *result = Allocate(nSize); if (result) { return result; } } } } void* CFirstLevelAlloc::ReAllocate(void *p, size_t nSize) { while (1) { if (NULL == m_CallBackFunc) { cout << "bad alloc!" << endl; return NULL; } else { m_CallBackFunc(); void *result = Allocate(p, nSize); if (result) { return result; } } } } void CFirstLevelAlloc::Deallocate(void *p, size_t nSize) { free(p); } void CFirstLevelAlloc::SetCallBackHandle(CallBackFunc cb) { m_CallBackFunc = cb; }
2. 二级空间配置器实现
2.1 接口
class CSecondLevelAlloc { public: CSecondLevelAlloc(); static void* Allocate(size_t nSize); static void Deallocate(void *p, size_t nSize); static void SetCallBackHandle(CallBackFunc cb); private: static size_t FreeListIndex(int nBytes); // 根据区块大小得到freelist索引 static size_t Round_Up(int nBytes); // 将bytes按内存对齐上调至ALIGN的倍数 static char *ChunkAlloc(size_t nSize, int& nObjs); static void* Refill(size_t nSize); private: static FreeList *m_pFreeList[FREELISTNUM]; static char *m_pStartFree; static char *m_pEndFree; static size_t m_nHeapSize; };
2.2 实现
FreeList* CSecondLevelAlloc::m_pFreeList[FREELISTNUM] = { 0 }; char* CSecondLevelAlloc::m_pStartFree = NULL; char* CSecondLevelAlloc::m_pEndFree = NULL; size_t CSecondLevelAlloc::m_nHeapSize = 0; CSecondLevelAlloc::CSecondLevelAlloc() { } void* CSecondLevelAlloc::Allocate(size_t nSize) { // 首先判断nSize,若大于128则调用一级配置器,否则调用二级配置器 if (nSize > (size_t)MAX_BYTES) { cout << "调用1级配置器配置内存空间,空间大小:" << nSize << endl; return (CFirstLevelAlloc::Allocate(nSize)); } cout << "调用2级配置器配置内存空间,空间大小:" << nSize << endl; FreeList **pFreeList = m_pFreeList + FreeListIndex(nSize); if (*pFreeList == NULL) { return Refill(Round_Up(nSize)); } FreeList *p = *pFreeList; *pFreeList = p->pFreeList; return p; } void CSecondLevelAlloc::Deallocate(void *p, size_t nSize) { // 首先判断nSize,若大于128则调用一级配置器,否则调用二级配置器 if (nSize > MAX_BYTES) { cout << "调用1级配置器释放内存空间,空间大小:" << nSize << endl; return CFirstLevelAlloc::Deallocate(p); } cout << "调用2级配置器释放内存空间,空间大小:" << nSize << endl; FreeList **pFreeList = m_pFreeList + FreeListIndex(Round_Up(nSize)); ((FreeList*)p)->pFreeList = *pFreeList; *pFreeList = (FreeList*)p; } size_t CSecondLevelAlloc::FreeListIndex(int nBytes) { return ((nBytes + ALIGN) / ALIGN - 1); } size_t CSecondLevelAlloc::Round_Up(int nBytes) { return ((nBytes + ALIGN - 1) & (~(ALIGN - 1))); } char* CSecondLevelAlloc::ChunkAlloc(size_t nSize, int& nObjs) { char *pResult = NULL; size_t nTotalBytes = nSize * nObjs; size_t nBytesLeft = m_pEndFree - m_pStartFree; if (nBytesLeft >= nTotalBytes) { // 内存池剩余空间完全满足需求量 pResult = m_pStartFree; m_pStartFree += nTotalBytes; return pResult; } else if (nBytesLeft >= nSize) { // 内存池剩余空间不能完全满足需求量,但足够供应一个或一个以上的区块 nObjs = nBytesLeft / nSize; pResult = m_pStartFree; m_pStartFree += (nObjs * nSize); return pResult; } else { // 内存池剩余空间连一个区块的大小都无法提供,就调用malloc申请内存,新申请的空间是需求量的两倍 // 与随着配置次数增加的附加量,在申请之前,将内存池的残余内存回收 size_t nBytesToGet = 2 * nTotalBytes + Round_Up(m_nHeapSize >> 4); // 以下试着让内存池中的残余零头还有价值 if (nBytesLeft > 0) { // 内存池内还有一些零头,先配给适当的freelist // 首先寻找适当的freelist FreeList *pFreeList = m_pFreeList[FreeListIndex(nBytesLeft)]; // 调整freelist,将内存池中的残余空间编入 ((FreeList*)m_pStartFree)->pFreeList = pFreeList; pFreeList = (FreeList*)m_pStartFree; } // 配置heap空间 m_pStartFree = (char *)malloc(nBytesToGet); if (NULL == m_pStartFree) { //如果没有申请成功,如果free_list当中有比n大的内存块,这个时候将free_list中的内存块释放出来. //然后将这些内存编入自己的free_list的下标当中.调整nobjs. int i; FreeList **pFreeList, *p; for (i = nSize; i < MAX_BYTES; i += ALIGN) { pFreeList = m_pFreeList+FreeListIndex(i); p = *pFreeList; if (NULL != p) { // freelist内尚有未用区块 // 调整freelist以释放未用区块 *pFreeList = p->pFreeList; m_pStartFree = (char *)p; m_pEndFree = m_pStartFree + i; // 调整自己,为了修正nobjs return (ChunkAlloc(nSize, nObjs)); } } m_pEndFree = NULL; // 如果出现意外(山穷水尽,到处都没有内存可用) // 调用1级配置器,看out-of-range机制能不能出点力 m_pStartFree = (char*)CFirstLevelAlloc::Allocate(nBytesToGet); } m_nHeapSize += nBytesToGet; m_pEndFree = m_pStartFree + nBytesToGet; return (ChunkAlloc(nSize, nObjs)); } } // 当freelist中没有可用的区块了时,就调用ReFill重新填充空间 // 新的空间将取自内存池,缺省为20个新节点 // 但万一内存池空间不足,获得的节点数可能小于20 void* CSecondLevelAlloc::Refill(size_t nSize) { int nObjs = 20; // 默认每个链表组右20个区块 char *pChunk = ChunkAlloc(nSize, nObjs); if (1 == nObjs) { // 如果获得一个区块,这个区块就分配给调用者,freelist无新节点 return pChunk; } // 若有多余的区块,则将其添加到对应索引的freelist中 FreeList **pFreeList = m_pFreeList + FreeListIndex(nSize); FreeList *pResult = (FreeList *)pChunk; // 这一块准备返回给客户端 FreeList *pCurrent = NULL; FreeList *pNext = NULL; *pFreeList = pNext = (FreeList*)(pChunk + nSize); for (int i = 1; i < nObjs; i++) { pCurrent = pNext; pNext = (FreeList*)((int)pNext + nSize); pCurrent->pFreeList = pNext; } pCurrent->pFreeList = NULL; return pResult; } void CSecondLevelAlloc::SetCallBackHandle(CallBackFunc cb) { CFirstLevelAlloc::m_CallBackFunc = cb; }
3. 配置器标准接口
#pragma once #include "alloc_define.h" template<typename T, typename Alloc = SelfAlloc> class CSimpleAlloc { public: static T* Allocate(size_t n) { if (n == 0) { return NULL; } return (T *)Alloc::Allocate(n * sizeof(T)); } static T* Allocate(void) { return (T *)Alloc::Allocate(sizeof(T)); } static void Deallocate(T *p, size_t n) { if (n != 0) { Alloc::Deallocate(p, n * sizeof(T)); } } static void Deallocate(T *p) { Alloc::Deallocate(p, sizeof(T)); } static void SetCallBackHandle(CallBackFunc cb) { Alloc::SetCallBackHandle(cb); } };
4. 测试
#include "stdio.h" #include<iostream> using namespace std; #include"stl_test.h" #include "simple_alloc.h" #include<vector> void Func() { cout << "调用回调函数处理内存不足的情况" << endl; // 为了防止死循环,该函数应该加上一个判断条件如果它本次没有清理出空间,那么就抛出异常 } template <class T, class Alloc = SelfAlloc> class A { public: A() :m_ptr(NULL), m_nSize(0){} A(size_t nSize) { DataAllocator::SetCallBackHandle(Func); m_nSize = nSize; m_ptr = DataAllocator::Allocate(nSize); for (int i = 0; i < (int)nSize; i++) { m_ptr[i] = i; cout << m_ptr[i] << " "; } cout << endl; } ~A() { DataAllocator::Deallocate(m_ptr, m_nSize); } private: T *m_ptr; size_t m_nSize; typedef CSimpleAlloc<T, Alloc> DataAllocator; }; void main() { A<int> a(11); A<int> b(50); a.~A(); b.~A(); }
以上是关于STL空间配置器解析和实现的主要内容,如果未能解决你的问题,请参考以下文章